Radiation Dose in Computed Tomography

Understanding Breast Cancer Risk

Computed Tomography Shielding Methods: A Literature Review

R.T.s With Doctorates: Barriers To Conducting Research
At Covidien, we know one of the most complex procedures in modern healthcare is managing its financial impact. That’s why all of our technologies and initiatives are geared toward heightening safety measures, reducing complications and even shortening hospital stays in order to improve patient outcomes and reduce costs. To learn more about how we’re improving the health of patients and bottom lines alike, visit us at covidien.com/successstories.
Get More
From Your ASRT Membership!
Select Your
Area of Interest.

CE opportunities to suit your needs.
Can be an area other than your primary sphere of practice.

Edit your member information at www.asrt.org or call 800-444-2778, Press 5.

©2007 ASRT. All rights reserved.

Join our Graduate Program
Offering a
Master of Science in Radiologist Assistant
http://departments.bloomu.edu/biology/ra/index.html

- 45 credits
- Full and part time basis
- First year includes two semesters on campus and one semester of online courses
- Second year includes three semesters of clinical experience in conjunction with online courses

Admission requirements:
- Bachelor degree
- ARRT registration in radiography
- Three years work experience
- Preceptor agreement

Tuition information:
www.bloomu.edu/current/fees.php
Deadline for applications May 2010
570-389-4527 for more information
Graduate Assistantships available

Supertech®
is your preferred distributor for . . .

X-Ray Technique Products
- Slide Rule Calculator
- Software to make Technique Charts
- Duke Phantom for Quality Control
- Radiopaque Rulers
- Multi Modality Phantoms
- Ultrasound & Surgical Tables
- CR Cassette Protector or Protector Available
- Clear-Pb Barriers
- Anthropomorphic Phantoms Whole Body or Sectional Synthetic or Natural Bone
- Two Step Positioning for CR
- Ion Chamber Survey Meters 461B and 461P
- Protective X-ray Wear

Supertech®
P.O. Box 186 Elkhart, IN 46515
Email: sales@supertechx-ray.com
Phone: 800-654-1054
Web Site: www.supertechx-ray.com
or: 574-264-4310
Fax: 574-264-9551

Visit www.supertech-to-go.com for special ASRT member discounts! Use promo code asrt2009member_benefits
INDICATIONS:
ABLAVAR™ is indicated for use as a contrast agent in magnetic resonance angiography (MRA) to evaluate aortoiliac occlusive disease (AIOD) in adults with known or suspected peripheral vascular disease.

CONTRAINDICATIONS:
History of a prior allergic reaction to a gadolinium-based contrast agent.

IMPORTANT SAFETY INFORMATION:
WARNING: NEPHROGENIC SYSTEMIC FIBROSIS (NSF) Gadolinium-based contrast agents increase the risk of nephrogenic systemic fibrosis (NSF) in patients with:
• acute or chronic severe renal insufficiency (glomerular filtration rate <30 mL/min/1.73m2), or
• acute renal insufficiency of any severity due to the hepato-renal syndrome or in the perioperative liver transplantation period.
In these patients, avoid use of gadolinium-based contrast agents unless the diagnostic information is essential and not available with non-contrast enhanced magnetic resonance imaging (MRI). NSF may result in fatal or debilitating systemic fibrosis affecting the skin, muscle, and internal organs. Screen all patients for renal dysfunction by obtaining a history and/or laboratory tests. When administering a gadolinium-based contrast agent, do not exceed the recommended dose and allow a sufficient period of time for elimination of the agent from the body prior to any re-administration.
ABLAVAR™ Injection: As with other contrast media: the possibility of serious or life-threatening anaphylactic or anaphylactoid reactions, including cardiovascular, respiratory and/or cutaneous manifestations, should always be considered. As with other paramagnetic contrast agents, caution should be exercised in patients with renal insufficiency due to the possibility of further deterioration in renal function.

In clinical trials, a small increase (2.8 msec) in the average change from baseline in QTc was observed at 45 minutes. These QTc prolongations were not associated with arrhythmias or symptoms. Caution should be used in patients at high risk for arrhythmias due to baseline QTc prolongation.

Have emergency resuscitative equipment available prior to and during ABLAVAR™ administration.

Please see brief summary, including boxed WARNING regarding Nephrogenic Systemic Fibrosis (NSF), on the following page.

A wide new window of opportunity

Introducing ABLAVAR™: the first and only blood-pool contrast agent for MRA

A low-dose MRA contrast agent with the unique benefits of albumin binding

• Time to acquire high-resolution first-pass and steady-state images
• Imaging window up to 1 hour with a single, low-dose (0.12 mL/kg body weight [0.03 mmol/kg]) IV bolus
• Diagnostic accuracy comparable to conventional X-ray angiography
• Documented safety and tolerability with no reported cases of NSF

*No reported cases of nephrogenic systemic fibrosis (NSF) to date in clinical use with nearly 90,000 patients outside of the United States.

INDICATIONS: ABLAVAR™ is indicated for use as a contrast agent in magnetic resonance angiography (MRA) to evaluate aortoiliac occlusive disease (AIOD) in adults with known or suspected peripheral vascular disease.

CONTRAINDICATIONS: History of a prior allergic reaction to a gadolinium-based contrast agent.

IMPORTANT SAFETY INFORMATION:

WARNING: NEPHROGENIC SYSTEMIC FIBROSIS (NSF) Gadolinium-based contrast agents increase the risk of nephrogenic systemic fibrosis (NSF) in patients with:
- acute or chronic severe renal insufficiency (glomerular filtration rate <30 mL/min/1.73m²), or
- acute renal insufficiency of any severity due to the hepato-renal syndrome or in the perioperative liver transplantation period.

In these patients, avoid use of gadolinium-based contrast agents unless the diagnostic information is essential and not available with non-contrast enhanced magnetic resonance imaging (MRI). NSF may result in fatal or debilitating systemic fibrosis affecting the skin, muscle, and internal organs. Screen all patients for renal dysfunction by obtaining a history and/or laboratory tests. When administering a gadolinium-based contrast agent, do not exceed the recommended dose and allow a sufficient period of time for elimination of the agent from the body prior to any re-administration.

ABLAVAR™ Injection: As with other contrast media: the possibility of serious or life-threatening anaphylactic or anaphylactoid reactions, including cardiovascular, respiratory and/or cutaneous manifestations, should always be considered. As with other paramagnetic contrast agents, caution should be exercised in patients with renal insufficiency due to the possibility of further deterioration in renal function.

In clinical trials, a small increase (2.8 msec) in the average change from baseline in QTc was observed at 45 minutes. These QTc prolongations were not associated with arrhythmias or symptoms. Caution should be used in patients at high risk for arrhythmias due to baseline QTc prolongation.

Have emergency resuscitative equipment available prior to and during ABLAVAR™ administration.

Please see brief summary, including boxed WARNING regarding Nephrogenic Systemic Fibrosis (NSF), on the following page.
Ablavar gadofosveset trisodium is used as a contrast agent in magnetic resonance imaging (MRI) to evaluate aortic/aorticocclusive disease (AOD) in adults with known or suspected peripheral vascular disease.

DOSAGE AND ADMINISTRATION

Dosing Guidelines
Adjust Ablavar as an intravenous bolus injection, manually or by power injection, at a dose of 0.3 mL/kg body weight (0.3 mmol/kg) over a period of time up to 30 seconds following a 25-50 mL normal saline flush. (See Table 1 for weight-adjusted dose volumes).

Table 1. Weight-Adjusted Volumes for the 0.3 mmol/kg Dose

<table>
<thead>
<tr>
<th>Body Weight</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilograms (kg)</td>
<td>Pounds (lb)</td>
</tr>
<tr>
<td>50</td>
<td>110</td>
</tr>
<tr>
<td>60</td>
<td>132</td>
</tr>
<tr>
<td>70</td>
<td>154</td>
</tr>
<tr>
<td>80</td>
<td>176</td>
</tr>
<tr>
<td>90</td>
<td>198</td>
</tr>
<tr>
<td>100</td>
<td>220</td>
</tr>
<tr>
<td>110</td>
<td>243</td>
</tr>
<tr>
<td>120</td>
<td>264</td>
</tr>
<tr>
<td>130</td>
<td>285</td>
</tr>
<tr>
<td>140</td>
<td>306</td>
</tr>
<tr>
<td>150</td>
<td>333</td>
</tr>
<tr>
<td>160</td>
<td>352</td>
</tr>
</tbody>
</table>

ADVERSE REACTIONS
Because clinical studies were conducted under various varying conditions, adverse reaction episodes may be directly compared to reports in the clinical studies of other drugs and may not be applicable to practice.

Clinical Studies Experience
Aphthoid and aphthoid-like reactions were the most common serious reactions observed following Ablavar injection administration. (See Warnings and Precautions). In all clinical trials evaluating Ablavar with MRI, a total of 1,576 (137%) patients and 297 healthy volunteers were evaluated. The mean age of the 1,576 patients who received Ablavar was 63 years (range 18 to 88). Of the 1,576 patients, 712 were women (45%) and 864 were men (55%). In all the patients, there were 10% (110) Caucasians, 8% (70) Blacks, 15% (159) Asians and 5% (53) of other racial or ethnic groups. Table 2 shows the most common adverse reactions (≥1%) experienced by subjects receiving Ablavar at a dose of 0.3 mmol/kg.

Table 2. Adverse Reactions in 202 Subjects Receiving Ablavar at a 0.3 mmol/kg Dose

<table>
<thead>
<tr>
<th>Reaction</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pruritus</td>
<td>42 (5)</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>33 (4)</td>
</tr>
<tr>
<td>Tension</td>
<td>13 (2)</td>
</tr>
<tr>
<td>Vasodilatation</td>
<td>13 (2)</td>
</tr>
<tr>
<td>Parenchymal</td>
<td>26 (3)</td>
</tr>
<tr>
<td>Injection site reaction</td>
<td>18 (2)</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>18 (2)</td>
</tr>
<tr>
<td>Bemerism</td>
<td>17 (2)</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>12 (1)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>10 (1)</td>
</tr>
<tr>
<td>Feeling cold</td>
<td>7 (1)</td>
</tr>
</tbody>
</table>

Post-marketing Experience
In atypical post-marketing cases, adverse reactions are reported voluntarily from a population of unknown size. It is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. The profile of adverse reactions identified during the post-marketing experience occurred in the United States was similar to that observed during the clinical studies.

DRUG INTERACTIONS

Following injection, Ablavar binds to blood albumin and has the potential to cause a slight decrease in the clearance of certain drugs that have a biological half-life for albumin.

No drug interaction studies were observed in clinical trials. Consider the possibility of Ablavar elimination as a factor in pharmacodynamic or pharmacokinetic interactions. The usefulness of hemodialysis in the prevention of NSF is unknown. (see Warning and Warnings and Precautions).

In a clinical trial of 15 patients receiving a stable dose of warfarin, a single dose of Ablavar did not affect the International Normalized Ratio (INR).
An Official Journal

Radiologic Technology (ISSN 0033-8397) is the official scholarly/professional journal of the American Society of Radiologic Technologists. It is published bimonthly at 15000 Central Ave SE, Albuquerque, NM 87123-3909. Months of issue are January/February, March/April, May/June, July/August, September/October and November/December. Periodical class postage paid at Albuquerque, NM, and at additional mailing offices. Printed in the United States. ©2010 American Society of Radiologic Technologists.

The research and information in Radiologic Technology are generally accepted as factual at the time of publication. However, the ASRT and authors disclaim responsibility for any new or contradictory data that may become available after publication. Opinions expressed in the Journal are those of the authors and do not necessarily reflect the views or policies of the ASRT.

Postmaster

Postmaster: Send change of address to Radiologic Technology, c/o the American Society of Radiologic Technologists, 15000 Central Ave SE, Albuquerque, NM 87123-3909.

Editorial

Radiologic Technology is a peer-reviewed journal produced by the American Society of Radiologic Technologists for the benefit and advancement of all technological disciplines within medical imaging and radiation therapy. Editorial correspondence should be addressed to Radiologic Technology Editor, 15000 Central Ave SE, Albuquerque, NM 87123-3909. Phone 505-298-4500, 8 a.m. to 4:30 p.m. Mountain time; e-mail communications@asrt.org. Letters of inquiry prior to finished manuscript production are encouraged and frequently will be reviewed by both the editor and the chairman of the Editorial Review Board.

The initials “R.T.” following proper names in this journal refer to individuals certified by the American Registry of Radiologic Technologists.

Subscriptions, Change of Address

ASRT member change of address: Address correspondence to the American Society of Radiologic Technologists, Attention: Member Services, 15000 Central Ave SE, Albuquerque, NM 87123-3909. Call the ASRT office from 8 a.m. to 4:30 p.m. Mountain time at 800-444-2778; fax 505-298-5063. ASRT members also can submit changes of address online at www.asrt.org.

Nonmember subscriber change of address: Send an old mailing label and the new address, including ZIP code; at least 6 weeks in advance to ASRT, Attention: Member Services, 15000 Central Ave SE, Albuquerque, NM 87123-3909. Claims are not allowed for issues lost as a result of insufficient notice of change of address. The publisher cannot accept responsibility for undelivered copies.

Subscription rates and order processing:

Member subscription is $7.03 per year, included in ASRT member dues. Nonmember subscription of one volume of 6 issues is $70 within the United States for individuals; foreign, $105, including Canada. Institution rates also are available. Discounted rates apply to 2- and 3-year subscriptions and subscription agencies. Single issues, both current and back, exist in limited quantities and are offered for sale. For prices and availability, phone ASRT Member Services at 800-444-2778. Journal orders must be paid in advance by check, money order or credit card drawn on a U.S. bank in U.S. funds only. Send payment to ASRT, PO Box 27447, Albuquerque, NM 87125-7447. Prices are subject to change.

Advertising

All commercial display advertising and classified advertising is handled by the ASRT Corporate Relations Department, 15000 Central Ave SE, Albuquerque, NM 87123-3909. For information on rates and deadlines, contact JoAnne Quirindongo at 800-444-2778, Ext. 1317, or e-mail j quirindongo@asrt.org.

Radiologic Technology reserves the right to reject or revise any advertising copy that it considers objectionable, either because said copy is not consistent with usual professional standards of propriety or for any other reason deemed material. In any event, the advertiser assumes full liability for the content of all advertising copy printed.

All advertising materials submitted become the property of ASRT. Advertisements submitted beyond the deadline for proof service are done so at the advertiser’s risk. Publication of an advertisement in Radiologic Technology does not imply endorsement of its claims by the editor or publisher. For advertising specifically related to educational programs, ASRT does not guarantee, warrant, claim or in any way express an opinion relative to the accreditation status of said program.

Rights Reserved

All articles, illustrations and other materials carried herein are pending copyright under U.S. copyright laws, and all rights thereto are reserved by the publisher, the American Society of Radiologic Technologists. Any and all copying or reproduction of the contents herein for general distribution, for advertising or promotion, for creating new collective works or for resale is expressly forbidden without prior written approval by the publisher and, in some cases, the authors.

Copying for personal use only through application and payment of a per-copy fee as required by the Copyright Clearance Center Inc., under permission of Sections 107 and 108 of the U.S. copyright laws. Violators will be prosecuted.

Member of BPA International
Tricia Leggett, DHEd, R.T.(R)(QM)
Zane State College
Zanesville, Ohio

Michael E Madden, PhD, R.T.(R)(CT)(MR)
Fort Hays State University
Hays, Kansas

Kimberly Metcalf, EdD, R.T.(R)(T)
Massachusetts General Hospital
Institute of Health Professions
Boston, Massachusetts

Bette Schans, PhD, R.T.(R), FASRT
Mesa State College
Grand Junction, Colorado

Diane Scutt, PhD
University of Liverpool
Liverpool, United Kingdom

Bettye G Wilson, MEd, R.T.(R)(CT), RDMS, FASRT
University of Alabama at Birmingham
Birmingham, Alabama

Carroll, Quinn B.—PRACTICAL RADIOGRAPHIC IMAGING. (8th Ed.) '07, 666 pp. (7 x 10), 352 il., 40 tables, $64.95, cloth.

Carroll, Quinn B.—Instructor’s Manual for Use With PRACTICAL RADIOGRAPHIC IMAGING (8th Ed.) '07, 224 pp. (7 x 10), $22.95, spiral (paper).

Mann, Robert W., & David R. Hunt—PHOTOGRAFIC REGIONAL ATLAS OF BONE DISEASE: A Guide to Pathological and Normal Variation in the Human Skeleton. (2nd Ed.) '05, 318 pp. (8 1/2 x 11), 234 il., 4 tables, $69.95, hard, $49.95, paper.

Perotto, Aldo O.—ANATOMICAL GUIDE FOR THE ELECTROMYOGRAPHER: The Limbs and Trunk. (4th Ed.) '05, 362 pp. (7 x 10), 232 il., $65.95, hard, $45.95, paper.

Panichello, Joseph J.—X-RAY REPAIR: A Comprehensive Guide to the Installation and Servicing of Radiographic Equipment. (2nd Ed.) '04, 328 pp. (7 x 10), 47 il., $75.95, hard, $55.95, paper.

Selman, Joseph—THE FUNDAMENTALS OF IMAGING PHYSICS AND RADIOBIOLOGY. (9th Ed.) '00, 506 pp. (7 x 10), 375 il., 39 tables, $60.95, cloth.

Carroll, Quinn B.—EVALUATING RADIOGRAPHS. '93, 374 pp. (7 x 10), 358 il., $61.95, cloth.

Selman, Joseph—THE BASIC PHYSICS OF RADIATION THERAPY. (3rd Ed.) '90, 786 pp. (7 x 10), 386 il., 84 tables, $162.95, cloth.

Selman, Joseph—ELEMENTS OF RADIOBIOLOGY. '83, 324 pp., 106 il., 30 tables, $47.95, hard.

When ordering, please refer to promotional code RADT0510 to receive your discount.
Survey of R.T.s With Doctorates: Barriers To Conducting Research
Kimberly L Metcalf, Robert D Adams, Bahjat Qaqish, Jessica A Church417

Computed Tomography Shielding Methods: A Literature Review
Jessica Ryann Curtis ..428

Radiation Dose in Computed Tomography
Bryant Furlow437

Understanding Breast Cancer Risk
Robin L Anderson457M

Research & Technology ... 483
Special Report ... 484
On the Job ... 491
RE: Registry ... 499
Literature Review .. 502
Writing & Research .. 504
Teaching Techniques ... 506
Patient Page ... 511
Survey of R.T.s With Doctorates: Barriers To Conducting Research

Kimberly L Metcalf, EdD, R.T.(R)(T)
Robert D Adams, EdD, R.T.(R)(T), CMD
Bahjat Qaqish, MD, PhD
Jessica A Church, BS, R.T.(R)(T)

Background In today’s health care environment, the need to attract and retain doctorate-holding radiologic science practitioners and provide them the tools and resources necessary to pursue professional research funding and publication cannot be underestimated. To date, however, there have been few studies on the possible barriers that interfere with both research and professional publishing among these highly educated individuals. A review of the literature reveals that the overall lack of research and professional publishing by radiologic science professionals holding doctorates can itself become a barrier in that low academic productivity is associated with a perceived lack of professionalism, lack of respect from external health professions and the lack of creation of new knowledge.

Purpose To characterize the barriers to publishing and research by doctorally prepared radiologic science practitioners using a national survey instrument. In addition, this study sought to measure the predictive value of select individual, workplace and leadership variables that could influence the ability of radiologic technologists and radiologic science educators to conduct research, publish their findings and seek grant funding for new research.

Results We compared our survey findings for radiologic science practitioners to those of other health care groups in an attempt to determine which demographic variables may best be used to promote, rather than hinder, research, publishing and grant writing.

The doctoral degree symbolizes the “pinnacle of advanced learning and scholarly enquiry, demonstrated by subject expertise and the creation of new knowledge.” Furthermore, Conn suggested that attainment of a doctoral degree should be considered a minimum requirement for being able to conduct research and publish scholarly articles effectively. Radiologic technologists with doctoral degrees make up only a small percentage of the American Registry of Radiologic Technologists (ARRT)-registered population. An ARRT report dated March 19, 2009, stated that the number of credentialed technologists was 289 007 (K Hendricks, director of strategic communications at ARRT, oral communication, April 20, 2009), and of this population, only 0.15% (n = 440) held doctorates. Expectations are that these individuals, however small a subset, should lead the way to knowledge building and future growth of the radiologic science profession. However, Legg and Fauber reported dismayingly low research and scholarship activity among radiologic technologists and other allied health professionals holding doctorates. Further, a lack of publishing was cited by Dowd as “the most common failure of responsibility in radiologic science research.” A lack of research and publications typically is attributed to various barriers, both within and outside the workplace.

With external recognition of the profession hinging on the scholarly and research accomplishments of doctorate holders, it becomes that much more important to identify barriers that impede scholarly productivity among members of this highly educated group. Accordingly, this study examines the factors that influence the research and professional publication activity of doctoral-prepared radiologic science practitioners, focusing on barriers within the workplace and possible factors that predict these barriers.

Literature Review A literature search for “barriers to publication” identified a list of barriers potentially applicable to the
radiologic sciences, and suggested that the ability to overcome or eliminate these obstacles was associated with greater academic productivity among doctorate holders in the form of research, publishing and grant writing. Although there were a number of articles specific to radiologic science educators, few studies related to radiologic science professionals holding doctorates who were not educators. For that reason, articles specific to other doctoral-level, noneducator medical practitioners also were included and reviewed. While the barriers to research faced by professionals in other areas of medicine were not identical to those for professionals in the radiologic sciences, there were several relevant similarities. Many of these barriers were considered in the development of our survey instrument.

Sources for articles and dissertations included EBSCO Host; Biomedical Reference Collection: Basic, Pre-CINAHL, CINAHL; Health Source – Consumer Edition; Health Source – Nursing/Academic Edition; Nursing and Allied Health Collection; Medline; Psych Info; and ERIC databases. The time frame of the search was limited to the years 1988 to 2008.

According to Willis, nurses typically face 2 types of barriers when writing for publication. “Personal factors, such as inadequate knowledge and writing skills, lack of confidence, and low motivation for writing for publication, and situational factors, such as limited time, energy, and other resource constraints” commonly interfere with writing. Willis further identified personal barriers, including thoughts and feelings, understanding of the writing and publication processes and personal work habits. Situational barriers include time and personal energy, as well as availability of other resources, such as emotional support, institutional culture, presence or absence of mentoring, size and quality of work space and financial support.

Personal Barriers to Writing for Publication

In a study by Polol et al, personal barriers that physicians in academic medicine experienced included a lack of confidence in their writing ability and sensitivity to their writing being criticized by others. These barriers are even more difficult to overcome for physicians who do not already have adequate research skills. As a rule, these skills are not taught in a consistent manner during medical school. Typically, clinician educators were introduced to much research-oriented content during their medical training, yet invariably did not receive instruction on how to conduct research. According to Windish and Diener-West, “This can hinder clinician educators as they wish to develop, analyze and disseminate their scholarly work.”

Situational Barriers to Writing for Publication

One of the most commonly cited situational barriers to research activity is insufficient time to devote to writing. In a general internal medicine residency program in which promotions were based on number of research publications, distractions such as travel, income tax returns, class preparation, family time on days off and “other” were listed as reasons for not writing. In organizations such as social service agencies, scholarly productivity is neither expected, rewarded, nor supported, financially or otherwise. Writing for scholarly publication is seen “as ‘nice’ but not necessary.” Often, workloads are such that faculty members — women in particular — feel they have absolutely no time to write while at work. Instead, they find they must use time at home to squeeze in writing, frequently at the expense of family time.

Situational barriers also include lack of support from college administration in the form of limited workspace, limited funding and lack of faculty mentoring for research and writing. Levine et al found that “Lack of faculty time, ... resident interest, and technical support” were major interferences with completing research. “The interaction of age and experience on time required to prepare for classes during their younger years and time required to fulfill administrative tasks in their older years” is typical in academia and greatly influences the amount of time available for research activity. Researchers who are more experienced and successful should serve as role models for how to best integrate research into a busy schedule. Mentorship is an effective way for someone less experienced to learn from a more experienced peer.

Overcoming Barriers to Publication

Mentorship

The American Heritage Dictionary defines a mentor as “a wise and trusted counselor or teacher.” Mentoring relationships are more prevalent today than 20 years ago because faculty now have the added stress of adjusting to momentous and ongoing changes in education delivery, such as more widespread use of the Internet and online teaching. Through mentoring, younger faculty can be coached by more senior peers in the ways of research. Fauber and Legg reported that when junior researchers are coached by more senior investigators, research productivity of the junior faculty...
member increases.12 In medical programs in which research is supported, “senior faculty...are expected to help doctoral students and junior faculty to develop a successful academic career. Such success requires scholarly publication.”15

Other situational barriers include reluctance by faculty at 2-year community colleges to infringe on the territory of their counterparts at 4-year universities. Community college faculty consider scholarship as the territory of their counterparts at 4-year universities. Community college faculty consider scholarship as the responsibility of the universities and teaching the focus of community colleges.15 Departmental expectations of service on committees, teaching and increasing pressure to procure grant funding for research can put a great deal of strain on the professional lives of medical and allied health faculty members.15,18 This kind of lifestyle may well serve as a disincentive to take up scholarly research and publishing for many.

Grant Funding

The need for faculty to obtain grant funding is becoming more critical to support the overall research enterprise and for faculty seeking promotion or tenure.6,19 Training in the grant writing process is one of the top career development needs of professionals in the medical field.12,18 The research dollars and career advancement obtained through successful grant writing more than compensate for the large investment of time and effort required to submit the grant. Legg and Fauber reported that in their study, respondents procured a total of “more than $75,000 in grant money.”13 For U.S. radiologic science education programs sponsored by institutions with 3-fold missions, “the pressure to publish and write grants is going to increase.”20 Further, Temme et al stated that, “compared with the traditional faculty model, including other allied health professions, the vast majority of radiologic science education programs differ in that they do not have any type of accountability for publishing or research stimulus through professional grant writing.”20

Methods

A survey instrument was developed by the authors with input from a statistician to determine the most appropriate question design. The goal of this survey was to examine barriers that may influence the research and professional publication activity of radiologic science practitioners holding doctorates. The survey questions were based largely on a literature review of factors frequently cited as barriers to conducting scholarly research in other health professions. Questions addressing basic demographic and professional information also were included. The instrument comprised a total of 25 closed-ended survey questions. Survey questions were divided into 3 sections. Section 1 was titled “Demographic Information,” and questions covered basic demographics, radiologic science occupation, membership in professional organizations and specifics of doctoral education and training. The second section was titled “Organizational Information,” with questions focusing on employment status and location of employment. The third section was titled “Publication Leadership Information,” and included questions on publication activity, grant writing and funding and barriers to conducting research and publishing.

A list of names and addresses of all ARRT-registered radiologic technologists holding doctorates was obtained from the ARRT. This mailing list included 440 names. After removing the first 2 authors’ names, the accessible population of doctorally prepared, ARRT-registered radiologic technologists totaled 438. The survey, along with a personalized cover letter explaining the purpose and significance of the study, was mailed to the 438 radiologic technologists with doctorates. To encourage and facilitate response, a self-addressed, stamped envelope was included in each packet.

Results

A total of 438 surveys were mailed to radiologic technologists holding doctoral degrees; 163 surveys were completed and returned, yielding an overall response rate of 37% (n = 163).

Limitations

Several limitations must be acknowledged prior to interpreting these findings, or their generalizability to other health professions. This study focused on the demographic profiles and scholarly achievements of radiologic technologists holding doctoral degrees, regardless of the type of doctoral degree or radiologic science specialty. The study population included all radiologic technologists with doctoral degrees currently certified by the ARRT. Those certified by other imaging-related registries such as the American Registry for Diagnostic Medical Sonography (ARDMS) or the Nuclear Medicine Technology Certification Board (NMTCB) were not included. Therefore, the findings of this study may not be generally applicable to radiologic technologists with doctoral degrees who have been certified by these other...
BARRIERS TO RESEARCH

registries. In addition, because the workplace organization and required job skills vary sufficiently between sonography, nuclear medicine technology and other radiologic science specialties, it is possible that different barriers to scholarly productivity might exist.

Demographic Information

Demographic data for radiologic technologists holding doctorates are presented in Tables 1 and 2. All of the respondents confirmed that they had earned a doctoral degree. Three-fourths of the respondents were aged 40 to 59 years. The sex distribution was 54% female respondents and 45% male, with the remaining 1% unspecified. At 84%, Caucasians composed the largest subgroup of respondents. African American (4%) and Hispanic/Latino (4%) groups made up the next largest cohorts. The remaining 8% of respondents were from other ethnic minorities.

At 67%, radiography was the largest primary radiologic science occupation for this group. The breakdown for the other primary occupations was as follows: nuclear medicine, 8%; radiation therapy, 7%; ultrasound, 5%; magnetic resonance imaging, 4%; and computed tomography, 3%. The data showed that most of the respondents belonged to multiple professional organizations.

The respondents were divided evenly between those who had earned their doctorates prior to the year 2000 and after 2000. Approximately 86% completed a thesis or dissertation as part of their doctoral studies. On the other hand, only 44% of respondents were required to complete a thesis or dissertation as part of their master’s degree program. A total of 80% of respondents completed their degree as traditional graduate students (66%) or through an executive program (12%); the other 20% earned their doctoral degree using an online or online/classroom format or in some other manner (2%). The specific doctoral degrees included the doctor of philosophy, PhD (47%); doctor of education, EdD (26%); doctor of jurisprudence, JD (15%); and doctor of medicine, MD (1%). A number of other doctoral degrees (11%) were included in the “other” category, such as doctor of ministry, DMin and doctor of pharmacy, PharmD.

Workplace Factors

Employment and workplace-related information for doctorally prepared radiologic science practitioners is presented in Table 3. The majority (86%) of respondents worked full time, 4% worked part time or per diem, and the remaining 9% did not specify their employment status. Instead, they selected “other,” which included, for example, working in another industry, having retired or being unemployed.

When asked to be more specific about their current job description, the following categories were noted: 36% full-time educators, 26% other, 20% full-time

Table 1

Demographic Information: General

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>20-29</td>
<td>0</td>
</tr>
<tr>
<td>30-39</td>
<td>12 (7)</td>
</tr>
<tr>
<td>40-49</td>
<td>49 (31)</td>
</tr>
<tr>
<td>50-59</td>
<td>71 (44)</td>
</tr>
<tr>
<td>60-69</td>
<td>25 (16)</td>
</tr>
<tr>
<td>Over 70</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>87 (54)</td>
</tr>
<tr>
<td>Male</td>
<td>73 (45)</td>
</tr>
<tr>
<td>Ethnic Origin</td>
<td></td>
</tr>
<tr>
<td>African American/Black</td>
<td>6 (4)</td>
</tr>
<tr>
<td>Native Indian/Alaskan Native</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Caucasian/White</td>
<td>134 (84)</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>6 (4)</td>
</tr>
<tr>
<td>Asian</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Middle Eastern</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Other</td>
<td>5 (3)</td>
</tr>
<tr>
<td>Primary Radiologic Science Occupation</td>
<td></td>
</tr>
<tr>
<td>Radiography</td>
<td>107 (67)</td>
</tr>
<tr>
<td>Radiation therapy</td>
<td>11 (7)</td>
</tr>
<tr>
<td>Nuclear medicine</td>
<td>12 (8)</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>8 (5)</td>
</tr>
<tr>
<td>Magnetic resonance imaging</td>
<td>6 (4)</td>
</tr>
<tr>
<td>Computed tomography</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Combination</td>
<td>5 (3)</td>
</tr>
<tr>
<td>Other/no response</td>
<td>6 (4)</td>
</tr>
</tbody>
</table>

Percentages were rounded up to nearest whole number. Not every respondent indicated an answer to every question.
involved in both the clinical arena and in academia. A number also reported working 2 part-time jobs, and others worked both a part-time job and a full-time job.

Approximately 55% of those surveyed about their job indicated it includes at least some teaching. Of administrators, 9% full-time clinicians, 5% part-time clinicians and 1% part-time administrators. A wide range of responses was obtained for the “other” category; many of the respondents reported working in more than one radiologic science specialty/subspecialty. A number were

Table 2
Demographic Information: Education

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Doctorate</td>
<td></td>
</tr>
<tr>
<td>Philosophy (PhD)</td>
<td>75 (47)</td>
</tr>
<tr>
<td>Education (EdD)</td>
<td>41 (26)</td>
</tr>
<tr>
<td>Law (JD)</td>
<td>23 (15)</td>
</tr>
<tr>
<td>Other: Pharmacy (PharmD), Ministry (DMin)</td>
<td>18 (11)</td>
</tr>
<tr>
<td>Medicine (MD)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>When Doctorate Earned</td>
<td></td>
</tr>
<tr>
<td>Before 1990</td>
<td>27 (17)</td>
</tr>
<tr>
<td>1990 – 1995</td>
<td>26 (16)</td>
</tr>
<tr>
<td>1996 – 2000</td>
<td>27 (17)</td>
</tr>
<tr>
<td>2001 – 2009</td>
<td>80 (50)</td>
</tr>
<tr>
<td>Dissertation Required in Doctoral Program</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>136 (86)</td>
</tr>
<tr>
<td>No</td>
<td>23 (14)</td>
</tr>
<tr>
<td>Thesis Required in Master’s Program</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>69 (44)</td>
</tr>
<tr>
<td>No</td>
<td>69 (44)</td>
</tr>
<tr>
<td>N/A</td>
<td>20 (12)</td>
</tr>
<tr>
<td>Type of Doctoral Program</td>
<td></td>
</tr>
<tr>
<td>Classroom only (traditional graduate student)</td>
<td>104 (66)</td>
</tr>
<tr>
<td>Online only</td>
<td>13 (8)</td>
</tr>
<tr>
<td>Online and classroom</td>
<td>18 (12)</td>
</tr>
<tr>
<td>Executive (weeknights and/or weekends)</td>
<td>18 (12)</td>
</tr>
<tr>
<td>Other: changed programs, independent study</td>
<td>4 (2)</td>
</tr>
</tbody>
</table>

*Percentages were rounded up to nearest whole number. Not every respondent indicated an answer to every question.

Table 3
Employment Information

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment Status</td>
<td></td>
</tr>
<tr>
<td>Full time (32-40 hrs/week)</td>
<td>137 (86)</td>
</tr>
<tr>
<td>Part time (less than 32 hrs/week)</td>
<td>7 (4)</td>
</tr>
<tr>
<td>Per diem</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Not specified</td>
<td>14 (9)</td>
</tr>
<tr>
<td>Position</td>
<td></td>
</tr>
<tr>
<td>Full-time clinician/practitioner</td>
<td>14 (9)</td>
</tr>
<tr>
<td>Part-time clinician/practitioner</td>
<td>8 (5)</td>
</tr>
<tr>
<td>Full-time educator</td>
<td>57 (36)</td>
</tr>
<tr>
<td>Part-time educator</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Full-time administrator</td>
<td>32 (20)</td>
</tr>
<tr>
<td>Part-time administrator</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Other: Outside of radiology</td>
<td>41 (26)</td>
</tr>
<tr>
<td>Type of Institution</td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td>7 (8)</td>
</tr>
<tr>
<td>College (2 year)</td>
<td>14 (16)</td>
</tr>
<tr>
<td>University (4 year)</td>
<td>28 (31)</td>
</tr>
<tr>
<td>Doctoral/research university</td>
<td>29 (32)</td>
</tr>
<tr>
<td>Other</td>
<td>12 (13)</td>
</tr>
<tr>
<td>Currently Tenured at Institution</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>31 (25)</td>
</tr>
<tr>
<td>No</td>
<td>59 (48)</td>
</tr>
<tr>
<td>Not at institution</td>
<td>33 (27)</td>
</tr>
<tr>
<td>Seeking a Tenure-track Appointment</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>15 (14)</td>
</tr>
<tr>
<td>No</td>
<td>70 (64)</td>
</tr>
<tr>
<td>N/A; don’t have tenure appointments</td>
<td>24 (22)</td>
</tr>
</tbody>
</table>

*Percentages were rounded up to nearest whole number. Not every respondent indicated an answer to every question.
these respondents, 32% taught in graduate-level universities, 31% taught in 4-year colleges, 16% taught in 2-year colleges, and 8% taught in hospital-based training programs. The remaining 13% indicated a variety of teaching institutions, including medical colleges, Bible colleges, dental schools, fitness facilities, vocational or technical schools and even one-on-one tutoring of high school students. About 14% of those surveyed were working toward a tenure-track faculty appointment, but 64% were not. The other 22% responded “not applicable” (N/A). There were 31 (27%) respondents who already were tenured at their institution and 59 (48%) who were not. The remaining 33 (27%) indicated that tenure was either not an option for them at their institution or that they had retired as professor emeriti with tenure (2%).

Publication and Grants
Publication and grantsmanship activities of doctorate-holding radiologic science practitioners are presented in Table 4. Approximately 73% of respondents have published in professional journals. Of all respondents, 32% had 1 to 3 publications, 16% had 4 to 5 publications, 10% had 7 to 10 publications and 15% had more than 10 publications in professional journals. When asked whether they had submitted manuscripts that were not accepted, 71% of the group reported no unaccepted manuscripts. Thirty-seven (24%) had 1 to 3 manuscripts not accepted, 5 (3%) had 4 to 6 not accepted and 2 (1%) had 7 to 10 that were not accepted.

A total of 125 of those surveyed responded to the question of whether they had ever applied for grant funding. Of these, 75 (60%) had not applied for a grant and 50 (40%) had. When asked whether they had ever been awarded grant funding, 50 respondents reported that they had received grant funding, which we could infer to mean 100% of those who applied for a grant received one. When asked how many total grant dollars had been awarded, nearly 25% of these respondents received more than $50 000 in grant funding (see Table 4 for a full breakdown). This totals to only 12 people out of not only doctorate-level R.T.s but of 220 000 certified professionals.

Only 13% of respondents reported being pressured by coworkers to include them as authors on manuscripts they were preparing for submission to professional journals. Slightly more (17%) had experienced pressure from a direct supervisor or other individual in a higher position to include them as an author.

Survey participants then were asked to rank on a 4-point scale (from “yes,” to “maybe,” to “doubtful” to “no”) the extent to which a number of potential barriers identified through our literature review interfered with their own ability or willingness to conduct research and publish in scholarly journals. These results are shown in Table 5. The barriers identified by this group as interfering the most (selected by at least 30% of respondents) with their scholarly productivity included the following:

- Lack of:
 - Time to write.
 - Energy or motivation to write.
 - Statistical technical support.
 - Faculty mentors.
 - Institutional or departmental support.
 - Funding.
- Limited knowledge of grant writing.
- Paperwork associated with grant writing.
- Research not being a job requirement.
- Research being viewed as low priority.
- Staff shortages at work.
- Major distractions such as travel.
- Competing job demands.

Several other barriers were identified by respondents who selected “other.” These included not enjoying writing or not being a good writer, insufficient faculty to help distribute a heavy teaching load and life transitions such as having children, moving or changing jobs.

Finally, survey respondents were asked about their comfort level with various skills typically required for successful writing for publication. These results are presented in Table 6. Most participants were quite comfortable with all but 1 of the components necessary for scholarly writing; approximately 30% indicated that they were uncomfortable with data analysis.

Discussion
The findings of this study suggest that, despite a stated desire to do so, many radiologic technologists holding doctoral degrees have conducted research or published in professional journals only minimally, if at all. About 15% of this already-small group is doing most of the scholarly research and writing in the radiologic sciences. The majority of respondents (83%) were not feeling pressure from their employers to publish, and only 23% reported that their research and publication record was considered as part of their annual faculty review process. Employer pressure to seek grant
Table 4*
Publications and Grants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Publications in Professional Journals</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>43 (27)</td>
</tr>
<tr>
<td>1-3</td>
<td>50 (32)</td>
</tr>
<tr>
<td>4-6</td>
<td>25 (16)</td>
</tr>
<tr>
<td>7-10</td>
<td>16 (10)</td>
</tr>
<tr>
<td>More than 10</td>
<td>23 (15)</td>
</tr>
<tr>
<td>Manuscripts Submitted but Not Accepted</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>110 (72)</td>
</tr>
<tr>
<td>1-3</td>
<td>37 (24)</td>
</tr>
<tr>
<td>4-6</td>
<td>5 (3)</td>
</tr>
<tr>
<td>7-10</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Pressure From Colleague To Be Included as Publication Author?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>21 (13)</td>
</tr>
<tr>
<td>No</td>
<td>136 (87)</td>
</tr>
<tr>
<td>Pressure From Superior To Be Included as Publication Author?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>27 (17)</td>
</tr>
<tr>
<td>No</td>
<td>130 (83)</td>
</tr>
<tr>
<td>Have Applied for Grant Funding?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>50 (40)</td>
</tr>
<tr>
<td>No</td>
<td>75 (60)</td>
</tr>
<tr>
<td>Been Awarded Grant Funding?</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>50 (40)</td>
</tr>
<tr>
<td>No</td>
<td>75 (60)</td>
</tr>
<tr>
<td>If Yes, Size of Award?</td>
<td></td>
</tr>
<tr>
<td>$1 – 999</td>
<td>3 (3)</td>
</tr>
<tr>
<td>$1000 – $5000</td>
<td>4 (4)</td>
</tr>
<tr>
<td>$5001 – $15 000</td>
<td>8 (8)</td>
</tr>
<tr>
<td>$15 001 – $50 000</td>
<td>10 (10)</td>
</tr>
<tr>
<td>$50 001 – $200 000</td>
<td>10 (10)</td>
</tr>
<tr>
<td>Over $200 000</td>
<td>14 (14)</td>
</tr>
<tr>
<td>Responded, but no amount listed</td>
<td>53 (51)</td>
</tr>
</tbody>
</table>

*Percentages were rounded up to nearest whole number. Not every respondent indicated an answer to every question.
fundamental changes in radiologic science education, training and perception will be needed if this trend is to be reversed. Among the impediments to research and professional publication cited by these individuals...
are employers assigning a low priority to or lack of expectations regarding research productivity; a lack of specific training in how to write and publish effectively during doctoral training; and a lack of sound mentorship from both doctoral advisors during graduate school and more senior, experienced professional colleagues in the workplace. In addition, there are the competing demands of balancing career with family life and, significantly, a perceived lack of respect on the part of the larger health care enterprise, academia or both for the importance and value of scholarly activities by radiologic science educators.

Less than 0.2% of all radiologic science professionals have earned a doctorate degree — nearly 40% of whom are educators — and of those, only 15% conduct research and publish with any regularity. When each of these professionals first decided to pursue a career in health care, they obviously developed a particular passion for radiologic science. As their careers progressed, this passion continued to motivate them to pursue 1 or more advanced degrees, culminating in a doctorate. Yet most of these uniquely motivated individuals' passion to achieve further professional development in the form of conducting research and publishing was overpowered by 1 or more barriers.

An obvious mechanism to change this paradigm would be for the academic mentors of successful doctoral-level researchers and writers, as well as the individuals themselves, to give back voluntarily to their profession by training others in the ways of research and professional writing. Their drive for scholarly achievement, passion for language and communication, positive attitude and persistence and expertise in value-based research and the publication process could be invaluable to their peers who face academic obstacles, as well as to more junior educators in need of positive role models and mentors.

Mentoring in the radiologic science profession must take place on 3 levels. First, faculty members must mentor their radiologic science students through both didactic and clinical training. Second, practicing radiologic technologists and supervisors in the clinical setting must mentor radiologic science students by teaching and modeling proper clinical skills and professional behavior. Third, radiologic science practitioners who conduct research and have published must be willing to share their experiences with others in the profession.

Radiologic science mentors must be willing to be generous with their time and expertise. Although a mentor can teach students or other practitioners how to write, conduct research, publish and deliver professional presentations, the relationship is much more than simply “teaching.” One hopes that mentors have learned from their own career-related mistakes and developed unique coping strategies and skills, and can impart this knowledge to others. Providing knowledge, guidance and feedback allows important learning to occur. The educator as mentor should help develop the minds of students and colleagues, feed their curiosity, and provide the tools, skill sets and creativity needed to lead fulfilling professional and academic lives.

Table 6a

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Very Comfortable</th>
<th>Somewhat Comfortable</th>
<th>Somewhat Uncomfortable</th>
<th>Very Uncomfortable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature review</td>
<td>116 (79)</td>
<td>19 (13)</td>
<td>7 (5)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Research design</td>
<td>61 (42)</td>
<td>60 (41)</td>
<td>19 (13)</td>
<td>6 (4)</td>
</tr>
<tr>
<td>Statistical data analysis</td>
<td>43 (30)</td>
<td>57 (39)</td>
<td>30 (20)</td>
<td>16 (11)</td>
</tr>
<tr>
<td>Composing abstract</td>
<td>94 (65)</td>
<td>34 (23)</td>
<td>15 (10)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Proper use of citations</td>
<td>93 (64)</td>
<td>40 (27)</td>
<td>10 (7)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Paraphrasing</td>
<td>94 (64)</td>
<td>39 (27)</td>
<td>9 (6)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Designing tables</td>
<td>77 (53)</td>
<td>46 (32)</td>
<td>18 (12)</td>
<td>5 (3)</td>
</tr>
<tr>
<td>Creating figures</td>
<td>76 (52)</td>
<td>40 (28)</td>
<td>23 (16)</td>
<td>6 (4)</td>
</tr>
<tr>
<td>Adhering to journal format</td>
<td>69 (48)</td>
<td>43 (30)</td>
<td>24 (17)</td>
<td>8 (5)</td>
</tr>
<tr>
<td>Formatting the bibliography</td>
<td>84 (58)</td>
<td>46 (32)</td>
<td>13 (9)</td>
<td>2 (1)</td>
</tr>
</tbody>
</table>

Percentages were rounded up to nearest whole number.
lives. Ultimately, the mentor should help students or colleagues develop a strategic vision of what they can do, how they can do it and why the act of doing is so important not only for the individual, but also for the community at large.

Doctorate-level radiologic technologists cite the desire to balance career with family life as another obstacle to being successful at research and professional publishing. Striking a proper balance always is a daunting task, and one for which there is seldom a perfect solution. Also true, however, is the fact that successful researchers and writers have to, at times, “bring their work home with them,” especially when allowing time for such scholarly activities at work is either not valued or actively discouraged. Often, the consequences of lost family time because of the need to work can be minimized by, for example, using 1- to 2-hour blocks of time early in the morning to write. Family members still are asleep, which minimizes their resentment and keeps interruptions to a minimum. The writer is fresh, focused and motivated early in the day.

Perhaps the most unfortunate consequence of the lack of research and publishing among radiologic science professionals holding doctorates is the perception that the field must necessarily be “unprofessional” or worse, lacks academic rigor. A vicious cycle could result from this perception, because these very misconceptions about radiologic sciences fuel the lack of respect from the greater health care or academic community that some in radiologic sciences fuel the lack of respect from the medical imaging graduate certificate program. The writer is fresh, focused and motivated early in the day.

Reference

Professions in Boston and a member of the Radiologic Technology Editorial Review Board. Robert D Adams, EdD, R.T.(R)(T), CMD, is assistant professor in the Department of Radiation Oncology and the program director for the radiation therapy and medical dosimetry programs at the University of North Carolina (UNC) in Chapel Hill and a former member of the Radiation Therapist ERB. Bahjat Qaqish, MD, PhD, is an associate professor in the UNC Department of Radiation Oncology. Jessica A Church, BS, R.T.(R)(T), is a graduate student in the UNC Department of Radiation Oncology.

Reprint requests may be sent to the American Society of Radiologic Technologists, Communications Department, 15000 Central Ave SE, Albuquerque, NM 87123-3909, or e-mail communications@asrt.org.

©2010 by the American Society of Radiologic Technologists.
Computed Tomography Shielding Methods: A Literature Review

JESSICA RYANN CURTIS, BS, R.T.(R)(CT)

Objective To investigate available shielding methods in an effort to further awareness and understanding of existing preventive measures related to patient exposure in computed tomography (CT) scanning.

Methods Searches were conducted to locate literature discussing the effectiveness of commercially available shields. Literature containing information regarding breast, gonad, eye and thyroid shielding was identified. Because of rapidly advancing technology, the selection of articles was limited to those published within the past 5 years. The selected studies were examined using the following topics as guidelines: the effectiveness of the shield (percentage of dose reduction), the shield’s effect on image quality, arguments for or against its use (including practicality) and overall recommendation for its use in clinical practice.

Results Only a limited number of studies have been performed on the use of shields for the eyes, thyroid and gonads, but the evidence shows an overall benefit to their use. Breast shielding has been the most studied shielding method, with consistent agreement throughout the literature on its effectiveness at reducing radiation dose. The effect of shielding on image quality was not remarkable in a majority of studies. Although it is noted that more studies need to be conducted regarding the impact on image quality, the currently published literature stresses the importance of shielding in reducing dose.

Conclusion Commercially available shields for the breast, thyroid, eyes and gonads should be implemented in clinical practice. Further research is needed to ascertain the prevalence of shielding in the clinical setting.

Advancing computed tomography (CT) technology and its increased utilization in clinical practice has created great interest within the health care community. A 2005 report noted that CT scans constituted 11% of all medical x-ray exposures and contributed up to 67% of the general population’s total radiation dose. These figures clearly indicate the high exposures associated with CT scanning. Concerns about exposure and increased utilization have led to several published studies on the potential for radiation-induced cancer risks. Often, radiosensitive tissues (ie, eye, thyroid gland and breast) are subjected to increased radiation doses because of their exposure to low-energy scattered photons and their superficial location and proximity to the field of view. This is unfortunate, because these radiosensitive organs and tissues are exposed to radiation even though they often are not under direct diagnostic evaluation.

Despite widely published information on doses and risks associated with CT scanning, many radiologists, physicians and technologists remain doubtful of the risks and believe they are insignificant. A survey of physicians’ attitudes about risks and benefits of chest CT concluded that more than 90% of physicians either do not know or significantly underestimate the radiation doses associated with its use. The lack of understanding and acknowledgement of risks within the health care community has likely led to inconsistent and insufficient use of preventive measures such as shielding. For example, a study by Semelka et al on emergency departments described data showing that radiologists who performed CT examinations considered the radiation exposure to be of limited importance, and stated that radiologists were unaware of the amount of radiation that was delivered to patients by CT.

A trickle-down effect of unawareness regarding radiation safety has become increasingly problematic within the medical field. This author deduced from the literature that because the physicians who order and set protocols for CT exams often are unaware or unconvinced of the potential risks, radiologic technologists and other staff members may be similarly uninformed of the risks. Furthermore, they may not be provided the necessary resources to further their education on risks and effective preventive measures.

The purpose of this literature review is to examine the current research regarding the benefits and effectiveness of shielding for reducing risks to patients and improving safety when performing CT scans. Methods such as automatic exposure control and lowering tube
current have been discussed as effective techniques for dose reduction. Alternative methods, such as shielding, have received less attention in the literature. By researching the literature, concise recommendations can be developed to encourage the use of various shielding methods in clinical practice.

Methods

Searches were performed using the search engines PubMed and Cumulative Index to Nursing and Allied Health Literature. The following key terms were used in various combinations: CT, computed tomography, shielding, disadvantages, radiation safety and pediatric. The search produced a total of 501 articles. Because of continuing advancements in technology, this literature review was limited to studies published in the past 5 years. The search also was limited to articles published in English. The literature was further limited to articles that discussed shielding in CT, commercially available shields, including shields that met commercial standards based on manufacturer guidelines, and routine scans. After limiting the search, 9 relevant articles were identified for this literature review. Three articles discussing general information on CT dose and possible risks also were included, for a total of 12 articles.

Information gathered from each article included the following: effectiveness of the shielding method (including percentage of dose reduction), effect on image quality (presence of artifacts and noise), general arguments for the shield's practicality and the overall recommendation for use in the clinical setting. The data on dose reduction are presented for each study to account for the fact that all studies did not follow the same protocols or use the same equipment.

Discussion

Importance of Shielding

A student perspective published in *Radiologic Technology* in 2007 by Voress stated, “Shielding is one of the fundamental methods used to reduce patient dose during radiologic examinations, yet it is often forgotten when positioning a CT patient.” The amount of radiation received has increased with the rapidly advancing technology of CT. Acquisition speeds have increased and so has image quality. In turn, use of CT scanning also has increased. It is very important to take preventive measures to attempt to keep doses as low as reasonably achievable (ALARA).

The biological effects of overexposure fall into 1 of 2 categories: stochastic effects (cell transforming) or deterministic effects (cell destroying). Deterministic effects have threshold doses, which means that effects do not occur below a certain dose. Above the threshold dose, the severity of the effects increases as the radiation dose increases. Stochastic effects are random effects from radiation that may cause cancer or genetic effects in irradiated individuals or their offspring. The published literature suggests that when discussing the risks associated with CT, the risk of stochastic effects is the main concern. However, this is not to say that deterministic effects are not possible. Debate continues on exactly how much of a risk is present for either type of effect. Any level of risk is important in discussing the need to shield, regardless of how high or low the risk.

The International Commission on Radiological Protection (ICRP) has developed tissue weighting factors to provide a scale for the various sensitivities of tissues within the body. Not all of the organs within our bodies react the same way when exposed to comparable amounts of radiation. Certain tissues are particularly radiosensitive and carry a higher risk of mutagenic risks when exposed to certain levels of radiation. Assigning tissues a weighting factor allows estimates of the tissues’ attributing risk to the body as a whole, in addition to the tissues’ individual risk for developing mutagenic effects. The breasts, gonads, thyroid and eyes are some of the most radiosensitive tissues in the body.

In addition to organ-specific radiosensitivity, one must consider the patient’s age. The radiosensitivity of tissues and organs in children and young adults is one of the primary reasons to shield. The radiosensitive organs mentioned above are even more sensitive at younger ages. Cells divide and grow rapidly through young adulthood, which increases susceptibility to effects from radiation. According to Hohl et al, “Infants and children are as much as 10 times more susceptible to carcinogenesis from radiation exposure than adults.” For example, breast tissue exposed to radiation from CT is an area of particular concern in girls and young women. Populations exposed to radiation doses similar to those received from CT scans have demonstrated increased incidence of breast cancer. The risk of carcinogenesis is higher the younger the patient is when exposed to radiation.

Although these issues regarding radiosensitivity are known, use of shielding for CT exams is not consistent in practice. It is possible that this is because conventional radiography shields are the only method available in a facility. In many practice settings, radiologic technologists may not know that commercially available
in-plane bismuth shields have been created specifically for use in CT scanning.

In-plane bismuth shields serve as an additional filter that is placed on especially sensitive areas. The shields offer selective dose lowering for the underlying tissue, while still allowing enough x-ray beam to pass through to obtain a diagnostic image. Hohl et al found that the intention of the thin in-plane bismuth shield is different from the thick conventional lead shields. Conventional lead shields attempt to completely absorb the radiation. The in-plane bismuth shield simply hardens the beam’s energy distribution to decrease the superficial dose produced by soft radiation. Minimizing metal artifacts is an added benefit when using in-plane bismuth shields.

The benefits mentioned above may not provide enough motivation to use shielding in CT. However, as professionals, the ethical duty to abide by ALARA should. According to Hohl and Mahnken et al, “Any protection measure that is easy to use, does not impair image quality, and significantly reduces x-ray exposure should be used.” Commercially available shields are easy to use, inexpensive and effective. Shielding radiosensitive superficial organs is a straightforward method of reducing radiation exposure.

Shielding Methods

The following sections discuss the commercially available shields that may be used during CT scanning. The discussion summarizes what the literature reported regarding the dose reductions that the shields provide, the effect on image quality and any debate concerning the shields’ use (eg, cost, ease of use, angling of the gantry or altering tube current). The discussion concludes with a concise chart showing when to implement the various shielding methods.

Breast

The breast tissue is among the most radiosensitive anatomy. Yilmaz et al stated that according to the study of Hopper et al, the average radiation dose to the breasts during thoracic CT was 0.022 Gy. Fricke et al found that radiation dose to the breasts in the pediatric population during multidetector CT was 0.017 Gy. These doses greatly exceed the American College of Radiology (ACR) recommendation of 0.003 Gy or less for a standard 2-view mammogram. These statements exemplify the importance of breast shielding during CT scanning. Mammography, which uses lower levels of radiation than CT, has a mandated maximum for radiation exposure. A CT chest scan dose is more than 3 times the typical mammography dose.

Further, Parker et al mentioned that chest CT is not performed to obtain diagnostic information about the breast, but to gather information about the lung parenchyma and the mediastinum. They also stated that dose to radiosensitive breast tissue is an unwanted byproduct because of the breasts’ superficial location. Grobe et al referred to a study of 1030 women with scoliosis who routinely underwent multiple thoracic spine radiography examinations as young girls. The study revealed a nearly 2-fold statistically significant increased risk for incidental breast lesions. CT scanning uses a higher radiation dose than spinal radiography, which introduces possible implications from performing chest CTs with no shielding. Commercially available shields have been offered to help reduce unnecessary exposure to the breast during CT.

Four articles from the literature review discussed commercially available breast shields and their effectiveness (see Figure 1). These articles included assessments of shielding breasts of patients and on phantoms. Dose reduction ranged from 40.53% to 61%. These studies included various options for using spacers to improve image quality. A spacer is a foam insert placed between the patient and the shield to provide more distance between the shield and the patient. Use of shielding without spacers caused some artifacts in the superficial tissues, but did not affect the diagnostic quality of the image. For example, Yilmaz et al noted minimal artifacts over the shield and breast tissue but not in the lung parenchyma.

An article by Geleijns et al questioned the use of in-plane bismuth shielding, stating that it contributes to significant noise. The authors contended that altering the tube current provides a better theoretical option for reducing radiation exposure. However, this option is hypothetical and more research should be conducted to assess its true effectiveness compared with the statistically sound dose reductions found with the breast shield.

There is overall agreement in the literature that breast shielding contributes to a significant reduction in patient overexposure to radiation and does not deteriorate image quality. However, the literature does not agree on the effects of breast shields on image quality. Therefore, more research in this area would be beneficial.

Gonads

The gonads are highly sensitive to radiation. Weighting factors are assigned to tissues in the body
CURTIS

method during conventional radiography for many years. However, gonadal shields are not widely used in routine CT scanning, possibly because it is considered difficult to protect the gonads from a multidirectional x-ray source.¹¹

Two articles in the literature review discussed gonadal shielding. The literature and information on gonadal shielding is limited by the fact that research only has been published on male shielding. A study performed by Hohl et al used testicle capsules for shielding, which allowed for 360° shielding (see Figure 2). The study found testicle capsules reduced dose 87%. The study also found that the testicle capsules were easy to use, commercially available and well accepted by patients. In addition to being effective, the capsules did not impair image quality. The authors recommended testicle capsules for daily use in the clinical setting.¹¹

A study by Grobe et al also used a commercially available method of testicular shielding that completely surrounded the testicles and resulted in a dose reduction of 96%.¹³ The authors, however, did not recommend shielding of the gonads during a routine pelvic exam because of image quality degradation from artifacts.¹³ They instead recommended the use of shielding when the gonads are subjected to scatter radiation during an upper pelvic or abdominal scan. Overall, the authors concluded that gonadal shielding is easy, safe, quick, inexpensive and effective at reducing dose to the gonads and that it should be included in clinical use.¹³

Based on the tissues’ sensitivity to stochastic radiation damage. These factors help calculate effective dose. Despite the fact that the tissue weighting factor for gonadal tissue was decreased from 0.20 to 0.08 in 2007, exposure still plays an important role in the effective dose.¹³ The gonads carry risk of mutagenesis, which makes shielding the testicles imperative. Grobe et al estimated thresholds for temporary sterility of men at 0.15 Sv for a single brief exposure or permanent sterility at 3.5 to 6 Sv. Temporary sterility could occur at 0.4 Sv for a single exposure or permanent sterility at 2.0 Sv/year if the dose occurred in highly fractionated or protracted exposures for several years.¹³ According to Hohl et al, shielding of the gonads has been a routine dose reduction

Figure 1. Example of breast shield showing placement of the shield before computed tomography (CT) scanning begins. Image courtesy of AttenuRad CT Shields, F&L Medical Products, Vandergrift, PA.

Figure 2. Two sizes of gonadal shields used to protect the testicles during CT scanning. Reprinted with permission from The American Journal of Roentgenology. Hohl C, Mahnken AH, Klotz E, et al. Radiation dose reduction to the male gonads during MDCT: the effectiveness of a lead shield. AJR Am J Roentgenol. 2005;184(1):128-130.
The current literature discusses available gonadal shielding methods to protect patients from the multidirectional x-ray source associated with CT scanning. The shielding methods are easy to use and well tolerated by patients. The dose reduction values reported in the literature indicate that commercially available shields are effective. There is agreement that gonadal shielding should be incorporated into routine clinical use for abdominal and upper pelvic exams. However, the literature conflicts on whether shielding should be used during routine pelvic exams; more research should be conducted.

Thyroid

Three articles in the literature discussed commercially available thyroid shields for CT scanning. One study explored the effectiveness of an in-plane bismuth shield using a 1-cm spacer (not specified per manufacturer’s guidelines) to reduce the beam-hardening artifacts the shield may produce.7 Scans also were performed using the shield without a spacer. Routine neck CT protocols were used and images were tested for noise to assess quality. The percentage of dose reduction for the thyroid gland using a shield without a spacer was 35.8% compared with 31.3% when using a spacer. The skin dose reduction was 45.5% without a spacer and 40.2% with a spacer.

Hohl et al found evidence of significant beam hardening artifacts that reduced the image quality in the subcutaneous tissue when using thyroid shields. Using a spacer significantly reduced beam-hardening artifacts.7 Whether to use spacers appears to remain debatable. The authors stated, “The comparison of bismuth shielding with and without spacers showed that the spacer can effectively prevent deterioration of the image quality in the superficial tissue due to beam-hardening artifacts.”7 However, the question remains of whether the superficial tissue is of diagnostic importance. One school of thought states that all anatomy scanned is of diagnostic importance, and the other says that the areas of interest are the only ones of diagnostic significance.7 Hohl et al found that thyroid shields are easy to use, inexpensive and effective. The authors contend the thyroid should be shielded when CT scans of the neck are performed.7

A second article by McLaughlin and Mooney reported on use of a commercially available shield, but not a spacer, which resulted in dose reduction of 57%.9 The authors also noted that the artifacts produced by the thyroid shield were slightly distracting, but did not interfere with image interpretation. They found that the dose reduction was significant and that it correlated with a reduction in the overall risk of the patient developing cancer. Overall, they found use of the thyroid shield to be beneficial with no loss of image quality. Furthermore, they stated that the shield is inexpensive and easy to use, making it suitable for routine clinical application.9

A third article by Geleijns et al found the beam-hardening artifacts and noise caused by the shield to be fairly prominent in the images.9 The authors concluded that the in-plane bismuth thyroid shield should not be used. They stated that a theoretically higher dose reduction could be achieved by altering the tube current and further that altering the tube current would yield the same level of artifacts and noise in the image, while reducing the dose even more.9
Theoretically, altering the tube current may provide positive results. However, the recent literature appears to favor shielding as a proven method with statistically significant substantiation.

More research should be performed on tube current modification as a supplemental dose reduction method. The use of foam spacers is mentioned in the literature, but a detailed discussion is lacking and more research would be beneficial. Despite uncertainties regarding use of spacers to improve image quality, the literature currently recommends the use of thyroid shielding during routine scans of the chest and neck with or without a spacer.

Eyes

When the eye is exposed to ionizing radiation, cells located at the front of the lens can be damaged or destroyed. The affected cells migrate to the back of the lens, where they can collect and form an opacity that may impair vision and lead to cataracts. The lens of the eye is one of the most radiosensitive human tissues, according to the ICRP and the National Research Council’s Committee on the Biological Effects of Ionizing Radiation. Perisinakis et al explained that during a CT exam of the head, the dose to the lens of the eye may range from 0.03 Gy to 0.13 Gy. Further, the threshold for ophthalmologically detectable opacities following a single x-ray exposure has been reported to be 0.5 to 2 Gy. The National Radiological Protection Board has proposed a threshold value of 1.3 Gy for radiogenic induction of an eye lens cataract following acute x-ray exposures.

These threshold values are for adults and may be even lower for infants and children. According to Persinakis et al, the head CT is a common exam ordered for pediatric patients, and more than 10% of all CT examinations are performed in infants and children aged 0 to 15 years. The authors also reported that head CT scans constitute 45% of all CT scans performed. Head CTs are ordered to investigate trauma, tumors, congenital abnormalities, metabolic disorders and inflammatory lesions. The accumulated doses combined with the frequency of head CTs and the radiosensitivity of the eye lens create a concern for adult patients and an even greater concern for pediatric patients.

These findings make it imperative to shield the eyes during CT scans. Furthermore, to comply with the ALARA principle, it is important to follow any available method to reduce patient exposure. Angling the gantry reduces the dose to the lens, but not all exams allow for gantry angling. For example, orbital, sinus and mastoid studies do not allow the gantry to be angled to ensure proper representation of possible air-fluid levels. The radiologic technologist should angle the gantry only if the patient cannot be positioned properly. The use of lead shields for the eyes is important in these studies because the lens of the eye often is included in the scan field but is rarely the organ of interest (see Figure 4).

Four studies were identified in the literature review that discussed the use of commercially available shields for the eyes. Some focused primarily on the percentage of dose reduction, although others also included the shields’ effects on image quality. At least one study explored shield use for adult or pediatric patients. Studies were performed on phantoms and patients. Radiation dose was monitored through the use of thermoluminescent dosimeters (TLDs). The studies explored various shielding positions to determine the position that reduced dose most yet maintained optimal image quality.
The studies reported some variation in the percentage of dose reduction, but in general agreed that the shields reduce the amount of radiation exposure to the lens of the eye. For example, a study on pediatric phantom by Perisinakis et al found that shielding in combination with angling the gantry reduced dose < 1%. In contrast, the dose reductions of nonangled scans ranged from 33.1% to 37.4% for pediatric patients aged infant to 15 years, with an average of 34%.

A study by Grobe et al found a 28.2% to 43.2% reduction in dose to the lens in men. Other studies, such as one by McLaughlin and Mooney, found an 18% dose reduction in adults. Perisinakis et al noted that the shield did not lead to significant additional dose reduction because the gantry was angled in their study. Despite differences in the percentage of dose reduction, the studies generally concluded that the shields significantly reduced dose to the lens of the eye, specifically when the gantry was not angled.

The evidence suggests that eye shielding has a negligible effect on image quality. Perisinakis et al stated that the shield did not cause any significant artifacts and did not affect the images’ diagnostic value. Grobe et al concluded that in the absence of other restrictions, such as reduced image quality caused by artifacts in the vicinity of the shielding, use of shields is advisable, especially if the eyes are directly exposed. McLaughlin and Mooney found that the eye, and therefore the eye shields, typically were not included in the imaging field and therefore did not affect image quality. If slight artifacts were present, they did not affect the diagnostic quality of the image.

The study by Geleijns et al was the only study that concluded eye shields should not be used. The authors acknowledged that the noise created by the eye shield has only a modest effect on image quality and that the shield reduced dose by 27%. However, they also stated that the threshold dose for radiation-induced cataracts is never reached when performing CT brain scans, even when multiphase scans are performed. The authors maintained that the 27% reduction in lens dose achieved by selective shielding may be of minor importance in avoiding radiation-induced cataracts. Image artifacts, costs and extra waste caused by the disposable eye shields are additional arguments against the use of eye shields. However, the authors also stated that the increase in noise caused by the eye shields was “only modest.” Geleijns et al suggested the use of tube current modulation as a better alternative, given its theoretical success.

More research needs to be conducted to assess which is a more beneficial dose reduction method.

There is agreement in the literature that dose reduction to the eye lens depends on the position of the shield, whether the eye is being scanned through the primary beam and whether the gantry is angled. The overall impression from the literature is that shielding of the eyes when the gantry cannot be angled is important when performing routine scans of the head.

Conclusion

This literature review investigated commercially available shielding methods. The literature revealed consistent debate regarding altering the tube current in place of using shields; it also revealed that such suggestions were based on theoretical data. Based on a review of the literature, shielding provides statistically significant dose reductions for the breast, thyroid gland, eye and gonads. Further, it was reported that the shielding methods available for use in CT are cost-effective and easy to use.

There were discrepancies in the literature regarding the effects on image quality when using breast, gonadal and thyroid shields. Consequently, additional research should be devoted to exploring the effects on image quality in more detail. It appears from the current literature that the effects on image quality are minimal and the use of shields should not be impeded.

Based on the data present in the literature, it is this author’s contention that commercially available shielding methods should be adopted into routine clinical practice. The Table summarizes the suggestions for shielding reported in the literature.

The biological effects of ionizing radiation and the difference between stochastic and deterministic effects have been discussed thoroughly in the published literature. Although the evidence is not definitive regarding potential carcinogenic or mutagenic effects from the doses of radiation received when undergoing a CT scan, this does not suggest that currently available preventive measures should not be taken. The history of medicine is replete with evidence-based research and recognition that detailed data may lead to changes in practice for the sake of patient safety. Radiation exposure should not be any different.

The possibility of radiation-induced carcinogenesis is real and we all must be proactive in its prevention. In the example of women who had routinely undergone multiple thoracic spine radiography examinations as young girls for scoliosis screening, data revealed a
Image quality as it relates to use of shields with CT scanning needs to be investigated in more detail. Many questions arise in the literature when discussing image quality and published information on this topic is vague. There is disagreement regarding the use of shields for the breasts, gonads and thyroid. Disagreement concerns the use of spacers to improve image quality of superficial tissues, whether superficial tissues are considered diagnostically significant and the general effects of shields on image quality.

According to the literature, the use of spacers would improve image quality and still ensure dose reduction for the patient. However, it is not clear exactly how much image quality will be improved. It also is unclear from the literature exactly how much image quality currently is affected. Further investigation of these topics would be beneficial.

Deterioration in image quality from shielding often was found in the superficial tissues in published studies, although some of the effects were not of diagnostic importance. It is imperative to determine what is considered “diagnostically important” when assessing the effects shields have on image quality. More research should be conducted to assess the effects shields have on the diagnostic quality of the images.

Additional areas for future research include: gonadal shielding for women (to prevent sterility, cancer and other possible effects), gonadal shielding for routine pelvic exams, an age cutoff for the use of the breast shield and shielding of radiosensitive areas that are exposed to scatter radiation (ie, wraparound shielding of pediatric patients during CT brain scans).

Despite the gaps in the literature, and until more definitive research has been performed, it is imperative that imaging professionals take the necessary steps to follow ALARA and to protect patients from radiation when possible. The shielding methods mentioned in this literature review should be adopted into routine clinical use. It is clear that shielding can reduce dose and is inexpensive and easy to use. Radiosensitive structures such as the thyroid, breasts, eyes and gonads should be shielded during routine CT scans. Until data...
from further research are available, radiologic technologists should take the time to shield. By using shields, they help protect their patients from unnecessary radiation exposure without sacrificing diagnostic quality of the images.

References

Jessica Ryann Curtis, BS, R.T.(R)(CT), graduated in May 2009 from the University of North Carolina (UNC) in Chapel Hill with a bachelor of science degree in radiologic science. She is a CT imaging specialist at UNC Health Care.
Reprint requests may be sent to the American Society of Radiologic Technologists, Communications Department, 15000 Central Ave SE, Albuquerque, NM 87123-3909, or e-mail communications@asrt.org.
©2010 by the American Society of Radiologic Technologists.
Radiation Dose in Computed Tomography

BRYANT FURLOW, BA

The emergence of CT scanning as a routine diagnostic and radiation therapy planning tool has improved patient care by increasing the anatomic detail and diagnostic information available to clinicians. An increase in patient demand, availability and reimbursement practices have contributed to a dramatic escalation in the number of scans performed each year, and the risk and clinical justification for many of these procedures now is under debate. This Directed Reading will review recent events and trends in CT imaging and patient radiation dose, dosimetry, the biological effects of ionizing radiation, the principles of radiation safety and strategies for managing patient dose.

This article is a Directed Reading. Your access to Directed Reading quizzes for continuing education credit is determined by your area of interest. For access to other quizzes, go to www.asrt.org/store.

In October 2009, the U.S. Food and Drug Administration (FDA) issued a nationwide alert that advised hospitals to review safety protocols for computed tomography (CT) scans. This warning followed the discovery that a hospital in California had inadvertently exposed 206 patients to elevated CT radiation doses over an 18-month period during scans ordered to assess suspected strokes. Two months later, the FDA announced that additional cases had been identified at the hospital, and that at least 256 patients had received up to 8 times the intended radiation doses.

The magnitude of the radiation overdoses and their effect on patients were described by the FDA as “significant.” At least 82 patients experienced skin burns (reddening) and patchy hair loss, and affected patients face a possible increased cataract risk. In December 2009, the FDA announced that it was investigating similar reports of CT radiation overdoses at undisclosed facilities in other states.

“This situation may reflect more widespread problems with CT quality assurance programs and may not be isolated to this particular facility or this imaging procedure,” the FDA advisory warned. Although early reports indicated that equipment malfunction caused the incidents, the FDA subsequently announced that the overdoses involved CT imaging equipment from more than 1 manufacturer. This fact suggested that human error and lapses in safety practices and protocols, rather than faulty equipment, caused the errors. The FDA urged hospitals to report similar adverse events via its MedWatch Web site (www.fda.gov/Safety/MedWatch/HowToReport/default.htm).
Regulatory Response

In February 2010, the FDA announced a sweeping new regulatory initiative to reduce medical radiation exposures from CT scans and nuclear medicine and fluoroscopy procedures. Citing patients’ increasing lifetime medical radiation doses, the agency declared its goal of eliminating unnecessary imaging procedures and ensuring the “careful optimization” of medically necessary imaging exams. Planned regulations were announced, including new requirements that CT scanners and fluoroscopic equipment record and display settings and dose for each scan performed and that patient doses be stored permanently in electronic health records.

As part of an FDA patient education initiative, the agency also announced development of a patient medical imaging history card, distributed via the FDA Web site, that will allow patients to track their imaging history and present it to referring physicians. The FDA also declared its support for a national dose registry and revised, uniform accreditation for radiology departments.

“These patient should get the right imaging exam, at the right time, with the right radiation dose,” the agency’s white paper stated. “This registry will help define diagnostic reference levels where they do not yet exist, validate levels that do exist, and provide benchmarks for health care facilities to use in individual imaging studies.”

The headlines and response were just the latest chapter in global news media coverage of radiation risks associated with CT scanning. Other recent examples have included warnings about the radiation effects from full-body CT screening sought by “worried well” patients who have no symptoms of disease, and for whom the net clinical benefits of imaging are questionable. More recently, medical literature and the news media have scrutinized the wide variation in radiation doses of routine CT exams and the cumulative dose of repeated CT scans.

CT Proliferation

Since its introduction in 1973, CT scanning technology has dramatically improved the diagnostic quality and clinical utility of images that yield increasingly precise and rapidly acquired images. Slip-ring conductors preceded development of continuous gantry rotation and single-motion helical CT image acquisition. Image postprocessing advances allowed 3-D, volumetric imaging and images constructed from multiple view angles from 1 data acquisition set. However, sharply increasing patient radiation dose is the cost for these advances and the widespread availability and popularity of CT.

CT scans are increasingly common procedures that constitute a greater proportion of Americans’ annual exposures to ionizing radiation, representing as much as 67% of the medical imaging radiation dose to patients in some facilities. The annual population-wide medical radiation dose in the United States increased by an estimated 750% between 1980 and 2009. Up to 72 million CT scans are performed annually in the United States, based on 2006 and 2007 data. Medical imaging now represents nearly one-half (48%) of Americans’ radiation exposure, compared with less than 2% from occupational exposures. The remaining 50% of radiation exposures come from background, cosmic ray and environmental sources. CT scans represent more than one-half of Americans’ annual medical imaging radiation exposures and 25% of the general population’s overall radiation exposure.

Animal and epidemiological studies of occupational and atomic bomb survivors indicate that even relatively low doses of ionizing radiation can cause cancer, particularly leukemia and myeloma, and blood disorders such as aplastic anemia. Guidelines for nuclear industry and health care workers call for monitoring radiation exposures, which are and restricted to no more than 50 mSv a year and no more than 100 mSv every 5 years.

Yet patient exposures to medical imaging-related ionizing radiation rarely are monitored or systematically restricted. Complicating matters further, surveys of health care personnel strongly suggest they sometimes fail to comply with protocols and procedures designed to minimize radiation exposure. In addition, many clinicians have not received adequate training in radiation protection, a longstanding problem in U.S. health care. This may partially account for radiation doses from the same CT procedure varying up to 13-fold among patients at the same institution.

These trends toward increased utilization of CT imaging are not limited to the United States, according to recent analyses reported at the World Health Organization’s International Conference on Children’s Health and the Environment. Similar trends are evident in Asia and Europe.

Between 2000 and 2007, an estimated 3.1 billion medical procedures involving ionizing radiation were performed worldwide, with the United States accounting for 12% of that total. The average worldwide medical
radiation dose each year now is 0.6 mSv, approximately twice the estimated average worldwide dose estimated in 1996 — and double the current average annual medical radiation dose in the United States. The frequency of diagnostic radiologic examinations in the United States has increased 10-fold since 1950.\(^{10}\)

These trends concern many researchers and clinicians because of the higher radiation doses to patients from CT scans compared with other imaging modalities, including conventional radiography.\(^8,10,14\) For example, doses from chest CT scans are up to 100 times those delivered in a routine chest radiograph.\(^10\) The U.S. annual medical radiation dose for each individual increased about 6-fold between 1980 and 2006 alone, from 0.5 mSv to 3.0 mSv, largely due to CT scanning.\(^20\)

A study of CT scan doses at 4 hospitals found that radiation exposure from a given CT procedure at a single hospital can vary from 6 to 22 times, with an average variation of 1500%.\(^10\) In another 2009 nationwide study of health insurance records for nearly 1 million Americans aged 18 to 64 years, 68.8% had received medical imaging-related radiation exposures over a 3-year period. Although most of those Americans received low cumulative radiation doses (≤3 mSv), 20% received moderate doses of > 3 to 20 mSv.\(^15\) Conventional radiography represented 71% of imaging procedures for the study population but only 10.6% of the total radiation dose.\(^15\) CT contributed disproportionally to patients’ radiation doses compared with other imaging modalities. For example, CT examinations of the abdomen, pelvis and chest accounted for nearly 38% of this patient population’s total annual dose. CT and nuclear imaging represented 21% of procedures and 75% of the total radiation dose.\(^15\)

Overall, 2% of the 952,420 adults whose records were reviewed had received radiation doses that were high (> 20 to 50 mSv) or very high (> 50 mSv), which exceeded regulatory limits for the annual occupational exposures permitted for health care and nuclear industry workers.\(^15\) Annual average exposures from medical imaging radiation were higher for women, at 2.6 mSv, than for men, who received 2.3 mSv. Women younger than 50 years were more likely than men the same age to have received high and very high radiation doses.\(^15\)

Cumulative annual radiation doses were higher among older patients (5 times higher, on average, for patients aged 60 to 64 years vs those aged 18 to 34 years). However, younger patients also received many CT scans; one-half of patients aged 18 to 34 years had undergone CT scanning during the 3-year study period.\(^15\)

The annual incidence rate for medical imaging radiation exposures among enrollees included in the study was moderate for 193.8 enrollees per 1000 per year, high for 18.6 per 1000 and very high for 1.9 per 1000. Extrapolating results from their study to the entire U.S. population, the authors estimated that 4 million American adults were exposed to high levels of medical imaging radiation during the study’s 3-year span.\(^15\)

The annual rates of CT scanning appear to be growing most rapidly among young adults, who experienced a 25% increase in CT scanning between 2004 and 2009, based on recent data reported in Australia.\(^5\)

Models of Radiation Risk

The biological effects of medical radiology have become better understood in the past century.\(^21\) Improved safety protocols and equipment designs have reduced the risks of medical radiation.

CT Radiation Dose

Radiation refers to the energy emitted by an ionizing radiation source, while radiation dose quantifies the ionizing radiation energy delivered to a given volume of tissue (or other mass). Several units of measure describe radiation levels, including the unit of absorbed radiation dose in grays (Gy), or the delivery of 1 joule of energy to 1 kg of mass.\(^12\) The gray replaced an older unit of measure, the radiation absorbed dose or rad (1 Gy = 100 rad).

Aspects of CT scans that challenge efforts to quantify radiation dose include complex beam contours and patient movement through the x-ray beam. Because most scanners have a fan-shaped beam with a narrow cross-section, the dose distribution is usually wider than the nominal slice width.\(^22\) A single image slice acquisition involves a bell-shaped distribution of radiation with marginal “tails” known as penumbrae. The overlap of each slice’s penumbra contributes significantly — up to 50% greater than a single scan’s peak dose — to an examination’s overall radiation dose. The actual amount varies substantially depending on slice thickness and intervals (see Figure).\(^12,22\)

In CT exams, the cumulative, summed dose represented by each beam’s penumbra region creates an oscillation-like dose curve, with the midpoint or average known as the multiple scan average dose (MSAD). The MSAD can be estimated using the radiation dose distribution of a single slice applied to a plastic cylinder phantom, a calculation that yields the most common CT dose description, the CT dose index (CTDI).
CTDI is calculated from a single axial scan dose, divided by the total nominal beam width, or the width of each active channel multiplied by the number of active channels. CTDI takes beam gaps and overlaps into consideration. The detailed calculus involved in determining CTDI is described elsewhere.12,23

Although the FDA does not require that CT manufacturers display CTDI calculations on the monitor, most scanners display CTDI in mGy near the scan time and have acquired slice thickness readouts.12 However, radiologic technologists should remember that the CTDI is a calculated estimate or index, not an empirical measurement of actual patient dose. CTDI does not take into account anatomical variations of individual patients, such as target organ volume. Therefore, actual CT radiation dose for children or adults with very short stature, for example, may be as much as 600\% higher than the dose that the CTDI indicates.12,24 Nor does CTDI reflect tissue-specific radiosensitivities or the resulting radiation risks.

Effective dose estimates the total amount of radiation absorbed by heterogeneous tissues, calculated as the weighted sum of the dose to irradiated organs and tissues.12 Effective dose, once expressed as roentgen equivalent man (rem) units, now is expressed in sievert (Sv) or millisievert (mSv) units. Table 1 lists representative examples of effective doses for selected CT exams.

Tissue weighting factors allow CT radiation doses to be calculated and adjusted in light of tissue-specific vulnerabilities, which minimizes the risks to patients (see Table 2). The complex mathematical models called Monte Carlo simulations that calculate effective dose involve the radiation beam, target scan volume, gantry motion and the tissue weighting factor values that reflect target organs’ varying radiosensitivities.12 In summary, the calculated radiation dose delivered to each organ volume is multiplied by the relevant tissue weighting factors; the sum of these products is the effective dose.

Even at the same settings and with the same patient undergoing the same CT examination, dose distributions and intensities can vary between scanners.22 To address these variations, phantoms and dosimetry methods can assist in measuring patient radiation doses.

Biological Effects

Energy from ionizing radiation can break chemical bonds in DNA and proteins, either directly or by releasing gene-damaging free radicals and ions. The resulting short-term tissue damage can include skin burns and hair loss, with cataract formation as a form of long-term damage. Carcinogenesis (cancer induction) is another long-term effect that follows damage to the genes that control cell division (mitosis) or programmed cell death (apoptosis).

Genetic damage and carcinogenesis are stochastic outcomes of ionizing radiation. In other words, a given exposure may or may not damage genes in a manner that eventually induces cancer.25,26 Because DNA repair mechanisms exist, it does not necessarily follow that radiation damage to genes will induce carcinogenesis.
Increased CT Utilization

CT is performed with increasing frequency because of its availability, patient demand and self-referral, defensive medical practices driven by concern over lawsuits and reimbursement practices. In turn, multidetector CT (MDCT) scanners that have become more available and more widely used are exposing patients to 30% to 50% more radiation than single-slice CT scanners. Adherence to radiation safety protocols and procedures is becoming increasingly important as a growing proportion of the population routinely is exposed to diagnostic radiation and with doses increasing as more individuals receive more CT scans. What’s more, attention to the special risks radiation can pose to the health of children demands particular scrutiny.

Table 1

<table>
<thead>
<tr>
<th>CT Examination</th>
<th>Typical Effective Dose (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>1-2</td>
</tr>
<tr>
<td>Chest</td>
<td>5-7</td>
</tr>
<tr>
<td>Abdomen and pelvis</td>
<td>8-11</td>
</tr>
<tr>
<td>Colon (CT colonoscopy)</td>
<td>6-11</td>
</tr>
<tr>
<td>Coronary calcium scoring</td>
<td>2-4</td>
</tr>
<tr>
<td>Coronary artery CT angiogram</td>
<td>9-12</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Tissue Weighting Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow</td>
<td>0.12</td>
</tr>
<tr>
<td>Breast</td>
<td>0.12</td>
</tr>
<tr>
<td>Prostate</td>
<td>0.12</td>
</tr>
<tr>
<td>Lung</td>
<td>0.12</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.12</td>
</tr>
<tr>
<td>Colon</td>
<td>0.12</td>
</tr>
<tr>
<td>Heart</td>
<td>0.12</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.12</td>
</tr>
<tr>
<td>Gonads</td>
<td>0.08</td>
</tr>
<tr>
<td>Liver</td>
<td>0.04</td>
</tr>
<tr>
<td>Esophagus</td>
<td>0.04</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.04</td>
</tr>
<tr>
<td>Brain</td>
<td>0.01</td>
</tr>
<tr>
<td>Salivary glands</td>
<td>0.01</td>
</tr>
<tr>
<td>Bone surface</td>
<td>0.01</td>
</tr>
<tr>
<td>Skin</td>
<td>0.01</td>
</tr>
</tbody>
</table>

However, because of radiation’s stochastic effects on cancer risk, we assume that no threshold dose exists below which radiation exposures are completely safe. This linear/no threshold model of radiation risk predicts that as the cumulative exposure to radiation increases, so does the probability of carcinogenesis. The model assumes that physiological DNA and cellular repair mechanisms do not substantially influence the linear dose/risk relationship.

A vocal minority of researchers, however, rejects the linear/no threshold model and claims that it overstates the cancer risk of low-dose radiation exposures. The researchers state that little epidemiological data definitively establish risks associated with effective doses lower than 200 mSv. They also note that results from some lab animal experiments suggest low-dose exposures to radiation and other toxins may induce increased immune system and enzymatic DNA-repair activity. Proponents of this controversial “hormesis” hypothesis argue that known and quantified risks from high-dose radiation (and other toxic exposures) should not be extrapolated to low doses. They believe that an unknown exposure threshold exists, below which exposures are either benign or even beneficial. Hormesis proponents have even argued for relaxing government regulations related to nuclear and toxic waste management and occupational exposures.

Increased CT Utilization

CT is performed with increasing frequency because of its availability, patient demand and self-referral, defensive medical practices driven by concern over lawsuits and reimbursement practices. In turn, multidetector CT (MDCT) scanners that have become more available and more widely used are exposing patients to 30% to 50% more radiation than single-slice CT scanners. Adherence to radiation safety protocols and procedures is becoming increasingly important as a growing proportion of the population routinely is exposed to diagnostic radiation and with doses increasing as more individuals receive more CT scans. What’s more, attention to the special risks radiation can pose to the health of children demands particular scrutiny.

Despite a decline in the overall rate of inpatient diagnostic imaging procedures between 1993 and 2002 because of decreasing use of conventional radiography,
the number of inpatient CT and nuclear medicine exams ordered increased significantly during the same period. This has generated new scrutiny on CT dose, particularly for pediatric patients. It has been estimated that 10% of the CT scans performed each year in the United States — at least 6 million — are performed on children.

In the past, a majority of CT scans were ordered to locate and stage tumors or confirm diagnoses in symptomatic patients or to assess treatment response. In such cases, the benefits of a given diagnostic imaging exam usually far exceed the potential harm of irradiation from that exam, and CT technology has improved patient care significantly by increasing the anatomic detail and diagnostic information available to clinicians. However, younger patients face larger lifetime risks of cancer from a single dose of radiation than older, particularly elderly, patients, and the cumulative risks of repeated irradiation can substantially increase their lifetime cancer risks.

The proliferation of CT exams has increased the number of images acquired per examination, along with increases in the number of separate examinations that individual patients undergo. Early CT examinations consisted of 20 to 50 acquired images, whereas contemporary CT studies frequently can acquire 1000 images.

Early CT either helped confirm or rule out suspected pathology. Today, post-treatment cancer surveillance in asymptomatic patients and screening healthy patients with repeated CT scans (ie, full-body scans) is becoming more of a routine practice in much of the United States (Joseph Tuscano, MD, clinical and research oncologist and associate professor, University of California Davis, Sacramento, written communication, September 10, 2009). Patient demand and reimbursement considerations appear to drive overutilization of CT for screening and surveillance, respectively (Tuscano, written communication, September 10, 2010). Clinicians who purchase their own imaging equipment are 4 times more likely to order imaging exams, for example. Also, rates for cancer surveillance with CT jump when patients reach age 65 years and Medicare reimbursement becomes available. Increases in routine CT surveillance may become a major source of rapidly increasing health care costs.

Screening asymptomatic populations with risk factors for a given disease involves exposing many healthy individuals to irradiation, which increases the risk-to-benefit ratio of such exams. In turn, this has led to efforts to develop lower-dose CT procedures for screening compared with diagnostic scans. Surveillance of patients for post-treatment disease recurrence falls into a gray zone between diagnostic scans (in which higher radiation doses may be justified) and screening scans (in which lower doses are justified). The ASRT opposes the use of full-body CT as a screening tool.

CT and Cancer Risk

Determining the cancer risk associated with CT exams remains a contentious matter. The cancer risk from a single CT scan is relatively small, particularly for adults. An estimated 1 patient per 2000 will develop a fatal cancer from any CT scan, compared with a general cancer risk of 1 in 5 for the U.S. adult population. However, examinations that involve higher doses correspond to greater lifetime cancer risks for patients. For example, a CT scan of the heart can cause 1 case of cancer in every 270 women aged 40 years and 1 per 600 men aged 40 years. In contrast, head scans represent a lower risk of 1 cancer in 8100 women scanned and 1 in 11,000 men scanned. These risks are twice as high for individuals aged 20 years as for those aged 40 years.

Moreover, repeated CT scans can substantially increase a patient’s risk, and when large, asymptomatic populations are irradiated, even a small individual cancer risk can translate to numerous avoidable cancers in the general population and become a public health issue. A 2007 study suggested that up to 2% of cancers in the United States may be attributed to CT procedures. No guidelines indicate how often individuals should undergo CT or nuclear medicine scans for screening or surveillance purposes, Dr Tuscano said (written communication, September 10, 2009). Repeated CT screening and surveillance imaging may appreciably increase patients’ risk of subsequent cancers. Yet that risk declines sharply with advancing age and particularly among the elderly, owing to the decades-long latency period of many radiation-induced tumors (J Tuscano, written communication, September 10, 2009).

The increased risks to individual patients who undergo repeated diagnostic imaging procedures are not trivial. A 2008 review of radiologic imaging practices at Brigham and Women’s Hospital in Boston, Massachusetts, for example, found that some patients have received dozens of CT scans, leading hospital officials to estimate appreciable increases in those patients’ lifetime cancer risks. The review found that 5% of patients had received at least 22 scans in the 2 decades studied. One 45-year-old woman had received 70 CT scans.
examinations over 22 years, increasing her overall lifetime cancer risk by 10%. Another patient’s 62 CT scans, which involved radiation exposure to her chest, head and spine over 20 years, increased her lifetime risk of cancer by 4%, Aaron Sodickson, MD, told a journalist.

Whether these results reflect nationwide trends is unclear because radiation doses vary significantly among hospitals and scanners, even for the same CT procedures.

Following the chart review, Brigham and Women’s Hospital administrators decided to track and notify clinicians of patients’ medical imaging histories and imaging-attributable cancer risks. Very few hospitals currently track patient irradiation histories or make these data available to clinicians. No national registry currently exists to track patient radiation exposures from CT or other diagnostic medical imaging in the United States.

Tissue Radiosensitivities

Tissues and organs are not equally susceptible to radiation damage. As noted previously, these different tissue radiosensitivities involve corresponding differences in the cancer risks that CT scans pose to different patient anatomies. Ova and testes are less sensitive to radiation than lung tissue or bone marrow, for example, and liver tissue is less radiosensitive than bone marrow or lung tissue (see Table 2). The International Commission on Radiological Protection revised tissue radiosensitivity weighting factors in 2006. For example, salivary glands were added as radiosensitive tissues. Also, weighting factors for gonads were changed from 0.20 to 0.08 and breast tissue weighting factors were changed from 0.05 to 0.12.

Tissue radiosensitivities and tissue weighting factors are treated as though they are identical for men and women. However, because weighting factors for embryos and fetuses have not been established, they likely would be different from the adult factors.

Facilities should regularly employ medical physicists to evaluate equipment function, verify scanner calibration and confirm that the institution’s effective doses do not exceed reference dose CTIDs. Few dose guidelines are available, but the American College of Radiology lists reference dose CTIDs of 75 mGy for adult head CT scans, 25 mGy for adult abdominal CT exams and 20 mGy for pediatric abdominal exams.

Age at Exposure

Age at the time of exposure modulates the risk of radiation-induced cancers in complex but important ways. Generally speaking, radiation-induced cancers among adults have long latency periods. Decades may pass between exposure and cancer diagnosis — thus, older adults have a lower risk of developing radiation-induced cancers because they might not survive long enough to develop the diseases.

Whereas CT heart scans can result in an estimated 1 cancer case for each 270 women age 40 years, for example, that number may be as high as 1 per 135 for women aged 20 years. Reports have shown that breast cancer risk is elevated among Japanese atomic bomb survivors and patients undergoing frequent diagnostic chest radiography and fluoroscopy, particularly among those whose irradiation occurred when they were younger than 20 years.

Ionizing radiation delivered to fetuses and children poses a greater risk of genetic damage, and hence, cancer, than it does among adults. This is in part because rapidly developing and growing organisms are undergoing rapid cellular division and their DNA is therefore more frequently uncoiled and more vulnerable to damage. Radiation-induced teratogenesis, or disruption of normal fetal development other than carcinogenesis, can occur in embryos as young as 2 weeks of gestation and through week 15 of gestation. This can result in brain abnormalities, retarded head and body growth and mental retardation. Between 8 to 15 weeks of gestation, fetal development is believed to be particularly vulnerable to the teratogenic effects of radiation, particularly for doses > 200 mSv.

The causes of childhood cancer are poorly understood but likely multifactorial, involving more than 1 acquired genetic mutation. In childhood leukemia, it appears that a prenatal genetic mutation typically is followed by a separate, postnatal mutation that triggers development of leukemia. One well-established and consistently reported risk factor for childhood cancers is ionizing radiation from prenatal exposure to medical radiation. Prenatal exposure to x-rays has consistently been considered a risk factor for childhood leukemia, for example, although an association between diagnostic radiation and adult leukemia is inconclusive.

Children are up to 10 times more sensitive to radiation damage overall than adults. Even a single CT scan is believed to significantly increase lifetime risk of fatal cancers. For example, a single abdominal CT scan on a 1-year-old child carries an estimated lifetime cancer risk of 1 in 1000. Yet for decades, children have been imaged using adult CT protocols.

Cancer risk varies by age among children; the estimated lifetime cancer risk attributable to pediatric head
CT correlates significantly and negatively with patient age. Younger children face greater lifetime risks than older children. Therefore, in many cases, the radiation doses from pediatric CT examinations outweigh their clinical benefits or image quality justifications. Some pediatric patient populations, such as children with inflammatory bowel diseases, routinely receive CT scans despite the long-term risks. In a 2-year study of 965 children with Crohn disease and ulcerative colitis, for example, 34% of pediatric patients with Crohn disease and 23% of patients with ulcerative colitis received moderate doses of radiation from imaging. CT scans accounted for 28% of Crohn disease examinations and 25% of the ulcerative colitis exams, leading the authors to express concern over long-term radiation risks faced by children with these diseases.

Because approximately 6 million CT scans conducted each year in the United States are performed on children, researchers are concerned about what this represents collectively. A relatively small risk for an individual patient may result in hundreds or thousands of additional cancer cases across the entire pediatric patient population. They also assert that observing evidence of the importance of the ALARA principle attributable to these procedures. Some epidemiologists have called for a nationwide effort to collect data on fetal and childhood radiation doses from CT and other diagnostic imaging modalities to estimate pediatric and lifetime cancer risks attributable to these procedures. In addition, several organizations took a proactive stance in 2007. The ASRT was a founding member of the Alliance for Radiation Safety in Pediatric Imaging, a coalition of 34 health care organizations dedicated to reducing unnecessary medical radiation doses among children through the use of alternative imaging modalities and child-appropriate CT scanning protocols. The Alliance’s Image Gently campaign (www.imagegently.org) has organized professional workshops and produced brochures and an imaging tracking card that parents can use to record and share their children’s imaging histories with their physicians. The campaign also has published child-sized protocols for CT exams.

Communicating Risk

Although the literature offers substantial empirical evidence of the importance of the ALARA principle and the potential harm of unnecessary radiation exposures, clinical practices have been slow to adopt the principle. This could be partly driven by economic realities and reimbursement considerations, but also may be due to referring physicians and patients alike underappreciating the potential risks of unjustified or repeated radiological imaging. Clinicians frequently succumb to the demands of self-referring or insistent patients who seek reassurance through screening and diagnostic imaging. Clearly communicating radiation risk to patients and referring clinicians represents a key component of the aggressive implementation of both the ALARA principle and the ethical and legal obligation of securing a patient’s informed consent.

Informing Referring Clinicians

Referring clinicians often are more familiar to, and trusted by, their patients than radiological personnel, with whom patients meet only after imaging referrals. Therefore, patients may take statements on the risks of avoidable radiation, particularly in cases of repeated CT imaging, more seriously when they come from a physician they know. Because all medical personnel have a role in informing patients of the radiation risks related to imaging examinations, it is imperative that referring clinicians receive clear information on these risks.

The public health benefits of an ALARA mindset are best achieved when referring physicians consider the risks along with the potential benefits in deciding to refer patients for radiology examinations. Surveys show that referring clinicians do not receive adequate training in radiation protection, are frequently unaware of the relative radiosensitivities of different tissues and organs and often do not appreciate the long-term health risks of radiation exposure. Emerging health information technology and data management tools can help alert physicians to the risks of repeated CT imaging referrals. In addition, when diagnostic information is available from alternative imaging modalities that do not use ionizing radiation, that information should be offered to referring clinicians.

Educating Patients

Patients should be made aware of the calculated dose of their planned examination, the relative radiosensitivities of target organs, the effects of age and gender on the resulting risks and whenever possible, the relative risk of cancer posed by the scheduled exam. Popular news media coverage of CT risks alarms some patients and may cause reluctance to undergo CT scanning. Although the risks of CT imaging should be objectively described to patients, they also must be provided with a context that helps them judge these risks.
such as the overall lifetime cancer risk (approximately 1 in 5 overall) that they face from factors other than medical imaging, for example. They also should be informed of any alternative imaging modalities available to them. Radiologic technologists should assure patients that they will apply the ALARA principle to their examination, and these reassurances should reflect the precautions taken to protect the patient and attending medical personnel.

Educating patients about their right to request their radiological imaging histories from physicians, and to ask the ordering physician whether the benefit of a repeat exam outweighs the risk of their cumulative radiation dose indirectly reminds referring clinicians to consider radiation dose.

Managing CT Dose

In addition to communicating risk to patients and improving awareness of CT exposure issues among referring clinicians, imaging personnel should routinely practice the ALARA principle. Applying ALARA day to day involves multiple safety and dose-management practices, starting with eliminating unnecessary CT scans, particularly for children and when an alternative imaging modality is available that meets clinical needs.

Quality Control and Assurance

All states regulate the registration and use of x-rays to some degree. Most states also have regulations requiring that radiology departments maintain quality assurance (QA) and quality control (QC) programs. QA programs assess how human performance affects image quality and patient dose, whereas QC ensures that the imaging and image processing equipment functions properly. Updated software from manufacturers that ensures that radiation dose indirectly reminds referring clinicians to consider radiation dose.

The key to effective dose management is regular maintenance, cleaning and calibration of CT scanners. A medical physicist should establish reference radiation levels for the facility’s more common procedures.

Imaging departments should establish continuous or day-to-day QC practices that are readily available in written form for all CT scanners, and designate an on-site radiologic technologist as the day-to-day QC coordinator. QC monitoring of equipment performance should be performed routinely.

A radiation dose error review committee can help identify the causes of errors and take corrective action. In addition, a dose reduction committee that includes staff CT technologists and a qualified medical physicist should periodically review patient protocols and the CTDI values of exams. Unfortunately, in an era of cost-cutting, staff medical physicists are rare and consulting medical physicists may be available only for annual meetings. To address this issue, these can be scheduled to coincide with annual equipment reviews by the medical physicist. This would provide opportunities for the physicist to describe any equipment problems identified and corrected, and to review written reports with imaging staff.

Equipment Maintenance

As discussed, dose management requires regular equipment maintenance and performance monitoring. CT scanners should be evaluated by a qualified medical physicist when they are installed. After installation, a medical physicist must monitor equipment performance periodically (at least annually) and prepare a written report that is kept on file in the imaging department. State and local government regulations also should be reviewed because they may require more frequent monitoring.

The periodic equipment performance review must determine patient radiation dose from each scanner and independently confirm the manufacturer’s display CTDI measurements. Head, abdomen and pelvic exam doses should be assessed and compared to available, published reference doses to ensure that a facility’s CT scanners are not systematically overexposing patients to ionizing radiation. A medical physicist also must check equipment to confirm performance after service, repair, tube or detector assembly replacements, or other events that could change radiation dose or image quality.

Routine QC monitoring of equipment performance should confirm the accuracy of alignment lights and check for:

- Slice thickness.
- Table-to-gantry alignment.
- Table incrementation accuracy.
- Display devices, including image display monitor fidelity.
Dosimetry (eg, CTDI readout and reference doses for representative exams).

Safety (a visual inspection of equipment and workload assessments).

Scatter radiation measurement when workload or parameters change or if CT fluoroscopy is performed.

QC monitoring also includes ensuring image quality: high-contrast spatial resolution, low-contrast sensitivity and resolution and artifact and noise evaluations.

Time, Distance and Shielding

In general, radiology staff minimize exposure to patients and health care personnel through practices and procedures that reflect 3 factors:

- **Time.** Reduce radiation dose by minimizing the exposure time.
- **Distance.** Increase the distance between the radiation source and the individual by employing the inverse square law.
- **Shielding.** Protect patients and medical personnel from the radiation source with all appropriate and available barriers.

Protection includes lead aprons and lead-lined barriers around control consoles that minimize scatter radiation. Particularly when patients are young, shielding should protect the thyroid, breast, eyes and reproductive organs. Dosimetry studies in radiology departments indicate that medical personnel should routinely protect themselves during CT exams with lead aprons, gloves and thyroid shields. ASRT’s official position is that radiologic technologists should use shielding for all CT and fluoroscopic procedures.

CT beam collimators and image intensification technology also minimize radiation exposures by reducing the width or height of a beam’s dose distribution curve. Collimators help to limit x-ray beam exposure to a patient’s targeted anatomy, which reduces exposure to other tissues. The drawback of collimation is that it can increase image noise. Boundary margins around target tissues should be as close to the edge of targeted organs as possible. Beam collimation is one of several operator-controlled CT parameters that affect image quality and patient radiation dose. The following are other operator-controlled parameters:

- X-ray tube current (mA).
- Peak kilovolts (kVp).
- Scan time (seconds).
- Tissue volume.
- Pitch (in helical scanning).

QC reviews should include periodic assessments of scan protocols to identify opportunities to reduce mA, and the necessity of pitch factors less than 1.0 should be scrutinized.

Image Quality vs Dose

Image quality refers to how accurately acquired CT attenuation data that is reconstructed into a visual image depicts actual anatomic features. The central trade-off of radiation dose management and the ALARA concept stems from image quality correlating positively with radiation dose. Slice thickness, mA and pitch all modulate radiation dose. Increasing bed interval, or the distance traveled during 1 helical CT revolution around the patient, reduces radiation dose.

The amount of anatomical detail required for a specific clinical purpose should guide whether to select CT and determine the parameters and dose used in CT scans. However, reducing the dose also reduces an image’s detail and its potential diagnostic value. Poor-quality images require repeat examinations and increase a patient’s cumulative radiation dose.

CT scanners are designed to rapidly acquire detailed data from large volumes rather than encourage operator restraint. The full capabilities of the technology often are unnecessary and relatively little attention has been paid to implementing the ALARA principle compared with the attention focused on developing technology that maximizes image quality. However, manufacturers have developed dose-reduction mechanisms such as beam modulation to accommodate differences in tissue volumes.

Efforts to reduce radiation dose, along with errors in measuring, positioning and discontinuity, can degrade image quality. Increased image detail (sharpness) requires a higher radiation dose because it involves smaller sampling intervals. Poor calibration and evaluation of spatial resolution, which is performed using high-contrast line bar pattern phantoms, can compromise image sharpness. This illustrates the somewhat complex relationships between QC, image quality and dose reduction.

CT image contrast refers to the visualization of small attenuation differences between or within target tissues. CT scans are 4 to 6 times more sensitive in demonstrating image contrast than traditional radiographs and often yield superior diagnostic information. As with sharpness, increased image contrast requires higher radiation doses. Image noise is inversely proportional to the square root of dose, so reducing image...
noise by one-half increases dose by 400%. Noise also increases with patient body mass (thickness), which requires increased radiation doses to maintain image contrast and allows reduced radiation doses for smaller patients.

Dosimetry

Radiation exposure can be indirectly estimated or directly measured with dosimetry tools such as an x-ray sensitive film badge or a reusable thermoluminescent dosimeter (TLD) badge containing lithium chloride crystals. TLDs absorb x-ray energy and release light energy in wavelengths that indicate radiation levels. Indirect bioindicators of radiation exposure, such as genetic and biomolecular tests that quantify actual biological damage from radiation, generally are used in epidemiological studies of occupational exposure rather than in clinical settings.

In contrast to direct dosimetric measurements, CTDI and reference levels derived from phantom measurements are guides or benchmarks that provide comparison values. Therefore, these reference levels are not always an adequate substitute for patient dose estimates. The clinical necessity of CT scanning should be carefully assessed, particularly for pregnant women, children, small adults and patients undergoing repeated CT scans. If CT is deemed clinically necessary, patient-specific radiation doses should be determined. If possible, a medical physicist should be consulted before the planned exam. Pelvic CT scans should be avoided when possible for pregnant women, although pregnancy is not an absolute contraindication. Patient-specific dose calculations include the patient’s height, weight, body mass index, lateral width and the specific parameters of the planned examination, including target organ volumes and tissue radiosensitivities.

Patient- and exam-specific radiation doses are frequently approximated using phantoms and a pencil ionization chamber. The ionization chamber is a long, thin and thin-walled chamber connected to a conducting wire. The ionization chamber can be inserted into a phantom to estimate patient organ-specific and scan-specific radiation dose from particular CT equipment by measuring the radiation delivered throughout the dose distribution curve. Because the ionization chamber is positioned perpendicular to the radiation beam, and therefore parallel to the patient’s longitudinal axis, it can measure the entire width of the beam.

During phantom irradiation, some air molecules in the chamber lose electrons and become ionized; these free electrons are conducted via the ionization chamber’s wire and quantified using an attached electrometer. The electrical charge measured by the electrometer, \(Q \), is directly proportional to the delivered radiation dose.

Ionization measurement of MSAD (multiple scan average dose) requires a phantom of the appropriate volume for the exam (eg, a 15-cm thick or long, 16-cm diameter head-size phantom for a head CT or a 15-cm thick, 32-cm diameter body phantom for chest exams). The phantom is placed in the same scanner that will be used for the patient in question, with the phantom axis parallel to patient axis. The same positioning equipment, such as a head positioner or holder, should be placed with the phantom. Phantoms have a “+” or “x” array of 5 chambers through the phantom’s long axis, with openings on the phantom’s flat face. The pencil ionization chamber is placed in a hole in the phantom to measure the dose, with each end of the chamber flush to the faces of the phantom. Acrylic plugs fill the other phantom chambers. The pencil chamber is connected to the electrometer, which should be set to the “charge” or “integrate” mode. A single scan slice is acquired, and the electrometer measures the \(Q \) charge.

Because dose can vary between regions within anatomical target volumes, dose estimation should be performed with the ionization chamber in different phantom positions (holes). The chamber is moved to a different chamber position in the phantom between subsequent scans. If bidirectional CT scanners’ clockwise and counter-clockwise doses differ — as is typical — it is important to acquire 1 scan in each direction and at each chamber position in the phantom. An average of the 2 \(Q \) measures should be calculated for each chamber position.

An accredited medical physicist or dosimetry calibration lab should calculate the conversion factor. As noted, the pencil ionization chamber is moved to the subsequent phantom position and the MSAD measurement is repeated, without moving the phantom’s position. MSAD measurements should be acquired for all configurations, techniques and anatomies (head and body) involved in the planned patient examination.

CT staff should keep data sheets that note the date, specific scanner and brand used, CT scan technique performed, scan duration, phantom size and chamber location, \(Q \), and conversion factor values, the planned number of scans and scanner settings, such as kVp, mA, slice width and bed interval.
Observing radiation safety procedures and practices, and routinely and aggressively following excellent QA and QC programs, represent basic but crucially important ways to reduce the risks patients face from CT imaging. Many referring clinicians are unaware of the radiation risks that CT scans pose. Two medicolegal and ethical imperatives — the principles of ALARA and informed consent — demand that referring clinicians and patients be informed of the relative risk, and when possible, the cumulative risk, of medical radiation that CT examinations represent. Many patients will have read or heard news accounts of concern in the medical community about the long-term cancer risks of repeated CT scanning, and may be reluctant to undergo needed CT imaging. Therefore, patients also must receive information they can use to judge the relative risk of a given CT exam, and weigh this against the clinical need for imaging. All else being equal, a single radiation dose represents a greater lifetime cancer risk to younger patients than older ones.

CTDI readouts on CT scanners estimate the likely patient radiation dose from an examination, but should not be mistaken for patient-specific radiation doses. The CTDI may underestimate the true patient exposure, particularly in children and small adults. For these patients, and pregnant women, patient-specific doses should be calculated using tissue-weighted radiosensitivities and phantom scans. Because the dose delivered to the same patient for the same CT exam may vary between scanners, phantom dose calculations should be undertaken on the same equipment scheduled for the patient’s examination whenever possible.

Future developments in dose management and cumulative dose tracking will likely help curb unnecessary scans, but cannot replace the day-to-day vigilance of imaging department personnel in ensuring adherence to the ALARA principle.

References

Bryant Furlow, BA, is a medical writer and health care journalist, and a regular contributor to Radiologic Technology and The Lancet Oncology. Mr. Furlow’s medical reporting has received a first-place award for investigative journalism from the New Mexico Press Association and Associated Press Managing Editors. He is a member of the Association of Health Care Journalists, Society of Professional Journalists, and Investigative Reporters and Editors.

Reprint requests may be sent to the American Society of Radiologic Technologists, Communications Department, 15000 Central Ave SE, Albuquerque, NM 87123-3909, or e-mail communications@asrt.org.

©2010 by the American Society of Radiologic Technologists.
Radiation Dose in Computed Tomography

To receive Category A continuing education credit for this Directed Reading, read the preceding article and circle the correct response to each statement. Choose the answer that is most correct based on the text. Transfer your responses to the answer sheet on Page 456 and then follow the directions for submitting the answer sheet to the American Society of Radiologic Technologists. You also may take Directed Reading quizzes online at www.asrt.org.

Effective October 1, 2002, new and reinstated members are ineligible to take DRs from journals published prior to their most recent join date unless they have purchased a back issue from ASRT. Your access to Directed Reading quizzes for Continuing Education credit is determined by your Area of Interest. For access to other quizzes, go to www.asrt.org/store.

*Your answer sheet for this Directed Reading must be received in the ASRT office on or before this date.

1. As of December 2009, at least _______ patients were identified by the U.S. Food and Drug Administration as significantly affected by computed tomography (CT) radiation overdoses at a California hospital; some patients received radiation doses up to _______ times the intended dose.
 a. 212; 4
 b. 256; 4
 c. 212; 8
 d. 256; 8

2. CT scans represent as much as _______ % of patients’ medical imaging radiation dose to patients in some facilities.
 a. 37
 b. 47
 c. 57
 d. 67

3. Which of the following statements is true regarding Americans’ radiation exposure?
 a. More than 2% of radiation exposure is occupational.
 b. CT scans represent less than one-fourth of Americans’ annual medical imaging radiaton exposures.
 c. Medical imaging represents nearly one-half of Americans’ radiation exposure.
 d. About 80% of radiation exposure is from environmental sources.

4. Guidelines for nuclear industry and health care workers call for restricting radiation exposures to no more than _______ mSv a year and no more than _______ mSv every 5 years.
 a. 25; 50
 b. 50; 100
 c. 100; 150
 d. 150; 200

Continued on next page
5. Recent analyses indicate that trends toward increased utilization of CT imaging are limited to the United States.
 a. true
 b. false

6. The U.S. annual medical radiation dose for each individual increased about 6-fold between 1980 and 2006 alone, largely due to ________.
 a. CT scanning
 b. digital radiography
 c. mammography
 d. scatter radiation

7. According to a 2009 nationwide study of health insurance records for nearly 1 million Americans, the following findings are true except:
 a. The annual radiation exposure incidence rate was high for 18.6 per 1000 study enrollees.
 b. Women received higher annual average exposures from medical imaging than men.
 c. Cumulative annual radiation doses were higher among patients aged 18 to 34 years than among older patients.
 d. The authors estimated that 4 million adults were exposed to high levels of radiation over a 3-year period.

8. The unit of absorbed radiation dose is ________.
 a. sievert (Sv)
 b. gray (Gy)
 c. joule (J)
 d. Curie (Ci)

9. A single image slice acquisition involves a bell-shaped distribution of radiation with marginal “tails” known as ________.
 a. oscillation
 b. bed interval
 c. threshold
 d. penumbræ

10. The dose curve midpoint or average is known as the ________.
 a. bed interval
 b. threshold
 c. multiple scan average dose (MSAD)
 d. CT dose index (CTDI)

11. Which of the following is true regarding CTDI?
 a. It is an empirical measurement of actual patient dose.
 b. It is a calculated estimate or index.
 c. CTDI reflects tissue-specific radiosensitivities.
 d. CTDI takes into account target organ volume.

12. ________ is a long-term effect of radiation exposure when damage occurs to genes that control cell division or programmed cell death.
 a. Carcinogenesis
 b. Macular degeneration
 c. Burnt skin
 d. Hair loss

13. Which of the following CT procedures has the highest typical effective dose?
 a. chest exam
 b. abdomen and pelvis exam
 c. coronary calcium scoring
 d. coronary artery angiogram

14. Proponents of the hormesis hypothesis argue against:
 1. the linear/no threshold model.
 2. an unknown exposure threshold.
 3. firm government regulations regarding nuclear and toxic waste management and occupational exposures.
 a. 1 and 2
 b. 1 and 3
 c. 2 and 3
 d. 1, 2 and 3

Continued on next page
15. Which of the following tissues or organs is most sensitive to radiation?
 a. thyroid
 b. liver
 c. skin
 d. bone marrow

16. Early CT examinations consisted of up to _______ acquired images, whereas contemporary studies frequently can acquire _______ images.
 a. 25; 500
 b. 50; 1000
 c. 75; 1500
 d. 100; 2000

17. Between 8 to 15 weeks of gestation, fetal development is believed to be particularly vulnerable to the teratogenic effects of radiation, particularly for doses > _______ mSv.
 a. 50
 b. 100
 c. 200
 d. 400

18. A 2-year study showed that at least 25% of imaging exams in children with _______ and _______ were CT procedures, causing concern about long-term radiation risks for these patients.
 a. Crohn disease; juvenile arthritis
 b. Crohn disease; ulcerative colitis
 c. leukemia; ulcerative colitis
 d. juvenile arthritis; leukemia

19. Surveys have shown that referring clinicians:
 1. do not receive adequate training in radiation protection.
 2. are frequently unaware of the relative radiosensitivities of tissues and organs.
 3. often do not appreciate the long-term health risks of radiation exposure.
 a. 1 and 2
 b. 1 and 3
 c. 2 and 3
 d. 1, 2 and 3

20. According to the Directed Reading, a _______ should establish reference radiation levels for the facility’s most common procedures.
 a. radiologic technologist
 b. medical dosimetrist
 c. medical physicist
 d. radiologist

21. Examples of quality control (QC) monitoring to ensure image quality include:
 1. high-contrast spatial resolution.
 2. low-contrast sensitivity and resolution.
 3. artifact and noise evaluations.
 a. 1 and 2
 b. 1 and 3
 c. 2 and 3
 d. 1, 2 and 3

22. _______ help to limit x-ray beam exposure to a patient’s target anatomy, reducing exposure to other tissues.
 a. Shields
 b. Collimators
 c. CTDIs
 d. Screens

Continued on next page
23. Increasing bed interval, or the distance traveled during 1 helical CT revolution around the patient, reduces radiation dose.
 a. true
 b. false

24. Image noise is inversely proportional to the square root of ________.
 a. dose
 b. scan time
 c. MSAD
 d. mA

25. When conducting an ionization measurement of MSAD, if bidirectional CT scanners’ clockwise and counter-clockwise doses differ, it is important to:
 a. acquire only 1 scan in 1 direction and 1 chamber position in the phantom.
 b. acquire 1 scan in each direction and at each chamber position in the phantom.
 c. acquire 2 scans in 1 direction and 1 chamber position in the phantom.
 d. acquire multiple scans during the day in either direction.
Directed Reading Evaluation
Radiation Dose in Computed Tomography

1. What is your primary area of practice?
 - Administration/Management
 - Bone Densitometry
 - Cardiovascular-Interventional
 - Computed Tomography
 - Education
 - Magnetic Resonance
 - Mammography
 - Nuclear Medicine
 - Quality Management
 - Radiation Therapy
 - Radiography
 - Research
 - RIS/HIS/Information Systems
 - RN
 - Sonography
 - Other

2. Which of the following best describes the highest educational level you have attained?
 - Student who has not yet taken Registry exam
 - Certificate
 - Associate degree
 - Bachelor's degree
 - Master's degree
 - Doctoral degree (e.g., Ph.D. or Ed.D.)
 - Needed CE credits immediately

3. Why did you choose to complete this DR?
 - Interested in the topic
 - Topic pertained to my area of practice
 - DR had the right number of CE credits
 - Needed CE credits immediately
 - Other

4. How relevant is this DR to your practice?
 - Extremely relevant
 - Very relevant
 - Relevant
 - Somewhat relevant
 - Not relevant

5. How beneficial is this DR to your professional or personal development?
 - Extremely beneficial
 - Very beneficial
 - Beneficial
 - Somewhat beneficial
 - Not beneficial

6. How would you rate the level of difficulty of this DR?
 - Too difficult
 - Somewhat difficult
 - Just the right level
 - Somewhat easy
 - Too easy

7. How would you rate the length of this DR?
 - Too long
 - Somewhat long
 - Just the right length
 - Somewhat short
 - Too short

8. Did this DR meet your expectations?
 - Yes
 - No
 - Partially

9. Would you recommend this DR to a colleague?
 - Yes
 - No

10. Overall, how valuable are the Directed Readings to you?
 - Very valuable
 - Considerably valuable
 - Valuable
 - Slightly valuable
 - Not very valuable

If you have comments about this Directed Reading, please write them below or send them separately to Ellen Lipman, Director of Professional Development, ASRT, 15000 Central Ave SE, Albuquerque, NM 87123-3909 or elipman@asrt.org.
Radiation Dose in Computed Tomography

10803 - 01

Expires: June 30, 2012
Approved for 1.5 Category A CE Credits

A passing score is 75% or better.
Take the quiz online at www.asrt.org for immediate results and your CE certificate.
If you don't have Internet access, mail your answer sheet to ASRT, PO Box 51870, Albuquerque, NM 87181-1870.
ASRT must receive the original answer sheet before the quiz expires and before the end of the CE biennium for which you want credit.
New or rejoining members cannot take DR quizzes from journals published before their most recent join date unless they purchase access to the DR quiz.

Identification Section

We need your Social Security number to track your CE credits.
Please fill in your SSN in the boxes on top.
then fill in the circle corresponding to each number under the box.
The circles must be filled in accurately.

Member Information Section

To ensure proper credit please PRINT the following information.

Name ________________________________
Address ________________________________
City ________________________________
State _______ ZIP _________________
Work Phone ________________________________
Home Phone ________________________________

CE Answers Section

USE A BLUE OR BLACK INK PEN. Completely fill in the circles.

Get immediate Directed Reading quiz results and CE credit when you take your test online at www.asrt.org/DRQuiz.

Note: For true/false questions, A=true, B=false.

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

311016

No Photocopies Accepted
Understanding Breast Cancer Risk

ROBIN L ANDERSON, BA

After reading this article, readers should be able to:

■ Understand statistical measurements of risk as they relate to mammography and breast cancer.
■ Explain the role of breast density in increasing breast cancer risk.
■ List genetic risk factors for breast cancer.
■ Describe the effects of diet and exercise on breast cancer risk and recurrence.
■ Understand the factors that influence adherence to screening mammography guidelines among women who are at greater risk for breast cancer.

A web of genetic, environmental and psychosocial factors contributed to the diagnoses of an estimated 194,000 breast cancer cases in 2009 and the 41,000 deaths attributed to the disease yearly in the United States. These variables cannot be considered separately, which complicates prevention efforts and women’s understanding of risk. For instance, when age is isolated as a risk factor, the calculation does not account for how or where a woman has lived. When alcohol consumption, obesity or childhood radiation therapy exposure are added to a woman’s life experience, the risk of invasive breast carcinoma increases incrementally.

Statistics substantiate higher rates of breast cancer in specific populations affected by alcohol use, age at first birth, history of radiation therapy, higher income and education levels, genetics and a move from an area with a lower incidence rate to an area with a higher one. In other words, what a woman ingests or is exposed to, whether and how she exercises, the nutrients in her diet and the decisions she makes regarding whether and when to undergo mammography screening may affect her risk of breast cancer and recurrence. Those factors also connect to how a woman’s genes react to stresses, such as food deprivation, chemicals and other environmental conditions.

Most studies emphasize the need for proactive risk management and accurate staging information. As early as 1976, researcher John N Wolfe, MD, identified the parenchymal pattern of fat and tissues seen on mammograms that indicate a greater risk for breast cancer. Wolfe linked higher breast density to an increased chance of invasive breast cancer and recurrence. This contention prompted further research into how environmental factors such as exercise, eating fats, taking vitamins and use of medications such as hormone replacement therapy (HRT) affect breast density and an individual’s cancer risk.

The way women perceive breast cancer risk and prevention measures is an important factor in why some women avoid screening mammography...
and the decisions they make after a cancer diagnosis. Mammography, as a voluntary aspect of detection and follow-up to a breast cancer diagnosis, is another factor influenced by a woman’s lifestyle decisions. In a recent debate over when to begin screening mammography, “choice” was the key word. However, when the U.S. Preventive Services Task Force (USPSTF) recommended women begin breast cancer screening at age 50, the group emphasized in its report that trial data fail to show that screening women aged 40 to 49 years or aged 70 and older reduced mortality.5

Regardless of the controversy over when to begin mammography screening, the health care community credits the technology with a documented reduction in breast cancer mortality in the United States. In fact, screening is seen as 1 of 3 ways to address the mortality associated with breast cancer, with prevention and improved treatments leading to longer survival as the other factors. However, with an estimated 10 million women in the United States at high risk for breast cancer, some in the women’s health community state that more should be done to prevent the disease.7 Brody and colleagues wrote that prevention is the only avenue left to decrease the incidence of mortality from breast cancer and called for matching the progress made against other major killers such as heart disease and lung cancer in men.7

This article addresses components of breast cancer prevention, risk factors for breast cancer and factors that influence a woman’s perception of risk and how she reacts to that knowledge. In addition, it discusses the role breast density patterns play in breast cancer risk assessment and the psychosocial aspects of adherence to screening guidelines.

Breast Cancer Anatomy and Etiology

Understanding how breast cancer begins requires insight into the molecular, cellular, hormonal and genetic aspects of breast cancer and how they interact. In addition, the breast’s structure and development shape individual risk and play a role in prevention.

Physiological changes that affect breast cancer risk begin in the womb. During fetal development, epithelial cells form the tissue parenchyma, ducts and glands, and fibroblasts create proteins in the connective tissue that surrounds the epithelial cells.8 Simultaneously, adipose cells form that have mesenchymal cell tissue, which aids in building tissues, cartilage, bone, blood and lymphatic vessels.8 Researchers theorize that at this developmental stage, medications, such as birth control pills, and chemicals, such as certain pesticides and polychlorinated biphenyls found in plastics, may increase endogenous estrogen and trigger an excess of immature epithelial cells.9,10 In rat studies, these epithelial cells are responsible for creating the terminal end buds that can proliferate intraductally into breast carcinogenesis.9

These changes continue through puberty as breast ducts lengthen, lobules form single terminal ducts and fibrous tissue and fat grow.9 Although epithelial cells proliferate and slough during monthly menses, it is not until a woman’s first pregnancy that undifferentiated cells in the breast develop into ducts and lobules that carry milk for lactation.9

Many breast cancers grow in the major breast ducts that expand into lactiferous sinuses before narrowing again at the nipple.11 The glandular lobes, which carry milk during lactation, are embedded in fat and contain the lobules.11 Research has established that breast cancer occurs in the tissue located in the dense upper outer quadrant and around the nipple. However, a tumor can be diagnosed anywhere along the breast lobules seen in Figure 1.11

Most breast cancers are believed to originate in the terminal ductal lobular units, the branching duct network that ends in ductile clusters.12 Infiltrating ductal carcinomas account for approximately 72% of the breast cancers reported to the National Cancer Institute’s (NCI) Surveillance Epidemiology and End Results (SEER) Program;13 lobular carcinomas account for 9% and 19% are the less common medullary, tubular and mucinous carcinomas. Relative survival rates for infiltrating ductal carcinomas at 5 years are 88.8% for white women and 75.3% for black women.14

The flood of hormones, or signaling molecules, that promote cell proliferation do so by binding to estrogen receptors (ERs) in the nucleus of cells that need estrogen to divide and grow.15 The most prevalent estrogens, the estradiol and estrone that ovaries secrete, affect cancer risk by indiscriminately encouraging the growth of both normal and mutated cells in the breast and uterus.15 Endogenous estrogen works with progesterone, a hormone involved in menstruation and pregnancy, and prolactin, a pituitary hormone that stimulates milk production and secretion.

The status of hormone receptors (ER-positive [ER+], ER-negative [ER-], progesterone receptor [PR]-positive [PR+] or PR-negative [PR-]), is key to classifying breast cancers and predicting how tumors will respond to hormone treatments.15 Receptors also offer insight into survival, with both ER+ and PR+ status conferring a better
BRCA genes are predisposed to more than 2600 mutations related to breast and ovarian cancer.17 The BRCA mutations are among the autosomal dominant cancer syndromes that carry an inheritance risk of 50%.18 This means that only 1 copy of the altered gene pair in each cell increases a woman’s breast cancer risk.19 In addition, BRCA1 and BRCA2 genes with deleterious germ line mutations are associated with a 60% lifetime risk of breast cancer and account for up to 90% of verified mutations.18

According to the NCI, breast cancers linked to the BRCA1 germ line mutation are associated with higher than expected medullary histology, high histologic grade, areas of necrosis, aneuploidy (when 1 or more missing chromosomes unbalance a chromosome complement),20 high S-phase fraction, high mitotic index and TP53 mutations.18 BRCA1 also is more often linked with the pathological triple threat of ER-, PR- and ERBB-negative (formerly HER2) tumors in terms of poor prognoses.18 These types of tumors, which account for 3% to 15% of unclassified invasive ductal carcinomas, are believed to grow from the basal epithelial cell layer of the normal mammary gland.18

Incidence and Risks
Statistics remain a mystery for most Americans because of how study results and incidence rates are reported. Consequently, patients undergo mammography screening and seek ways to prevent cancer with only a vague idea of their lifetime risks of breast cancer and verified methods of prevention. Some researchers and the media unwittingly perpetuate certain biases by relaying incomprehensible or out-of-context percentages and ratios. Woloshin et al noted in a 2008 study that media information often is incomplete because it does not include “the probability of dying from the specific disease over a defined period of time, nor does it put the risk into the context of other important health risks.”

This public perception of cancer risk is fueled by the large database of statistics on incidence, prevalence
and mortality compiled by the U.S. government and overseen by the SEER Program. Reporting of individual studies on the treatments, prevention and environmental and genetic causes of breast cancer only add to the public confusion.21,22

Study Types

The data used to assess risk are mined from several different types of research studies, each with different scopes, purposes and designs. In turn, the data generated by these studies are interpreted and used in different ways. For better or worse, all studies can influence policy decisions and how patients understand risk. For example:

- Clinical trials examine the effectiveness and safety of medicines, equipment and procedures in 4 phases, mostly randomized and controlled. Phase I tests small groups (cohorts) of patients; Phase II expands the study population; Phase III continues to add patients and Phase IV is completed following licensing and approved marketing.
- Community-based clinical trials primarily are conducted by private practice physicians rather than in an academic facility.
- Controlled trials involve 2 patient groups. Subjects in 1 group receive treatment and those in the other receive a placebo or undergo a sham procedure.
- Double-blind studies prevent staff researchers from knowing which participants receive the procedure or medication being tested.
- Epidemiological studies assess incidence, distribution and disease control.
- Prevention trials investigate ways to prevent disease through medicines, vaccines, vitamins, minerals or lifestyle changes and are a form of epidemiological study.
- Randomized trials assign participants randomly to either a treatment or placebo arm.
- Screening trials assess the best methods in detecting diseases or health conditions.

Randomized double-blind placebo controlled trials are considered highly effective for testing medications and procedures. They also provide the majority of quantitative data (numbers that can be validated, generalized and used to communicate risk).23 The results from trials and studies are presented in statistical variables, including the P value, which indicates whether the null hypothesis held true. A value of < .05 shows that the results were significant.25

Cancer prevention clinical trials target ways to reduce risk. Recent government-sponsored studies mainly have focused on medications such as tamoxifen and raloxifene, selective estrogen receptor modulators used to minimize the cellular proliferation effects of estrogen on breast tissue, or aromatase inhibitors, which block the aromatase enzyme that the body uses to create estrogen.26

Each risk factor and projection carries uncertainty. Although it was widely accepted that approximately 194 280 new cases of breast cancer would be diagnosed in 2009,2 the estimate depended on a system that relies on a minority of state contributions to the cancer registry. It is a process of estimating incidence that the American Cancer Society (ACS) describes as imprecise because of this incomplete registration.1

Additional data sources on breast cancer in the United States include the ACS, the Centers for Disease Control and Prevention, the North American Association of Central Cancer Registries and the National Center for Health Statistics.1 Hundreds of studies published throughout the world each year provide raw data on everything from diagnostic screening and treatments to prevention. Therefore, it helps to understand risk and incidence data, how they are presented to women and how women’s reactions to data actually affect mammography use and how women comprehend breast cancer risk (see Box).

Incidence Rates

Prevalence and incidence rates help estimate lifetime and age-conditional risk.31 An incidence rate approximates the number of diagnoses for a specific at-risk population, such as U.S. women, in a set time period and is stated as the number of cases per 100 000.31 That estimate is subject to a time delay between when the diagnosis is made and when it is reported to the NCI. Incidence is calculated in several ways, including:

- Age-adjusted rate averages are weighted by the proportion of individuals in an age group out of a standard million population.
- Rate trends over time are based on frequencies of percent change and annual percent change.
- Risk-adjusted incidence rates focus on the first instances of a particular cancer, with the number of the total population as the denominator.

Incidence rates vary by race and ethnic group, with white women facing a breast cancer diagnosis more often than black, Asian and Hispanic women in the United States.14 The incident rate for all populations has
been diagnosed with a disease within a set number of years.

Complete, which is the proportion of people alive on a certain day who previously were diagnosed with a disease regardless of when the diagnosis was made or whether the person is considered under treatment or cured.

The NCI applies data from the SEER2 cancer registry using the “counting method” to calculate the number of U.S. citizens known to be alive on a specific calendar date, then adjusts for mortality due to the disease. This is considered limited-duration prevalence.

These data combine to generate a well-known NCI statistic: Women born in the United States today have a 12.7%, or 1 in 8, lifetime breast cancer risk. As shown in Table 1, this type of estimate is based on a set period...
As shown by Table 2, women aged 50 to 69 years have the highest probability of breast cancer, yet women younger than aged 45 years often are targeted in campaigns that encourage screening. Consequently, women younger than aged 30 years tend to overestimate their risk, which could be a direct result of the relative risks relayed in public service announcements and other media.

Relative risk (RR) compares the risk in a target group with a specified characteristic with another group without that characteristic, such as breast cancer survivors compared with women who have not had the disease, and is reported as a ratio. RR is the most widely used probability method in research and reporting, and the most misunderstood, according to several authors. For example, when a woman with a family history of breast cancer is told that a bilateral prophylactic mastectomy will reduce her chances of dying from the disease by 80%, she may not understand that the procedure reduces the AR to 4 out of 100, not 80 out of 100, which the relative risk could imply.

This translates to 1 of 100 women who undergoes a mastectomy dying of breast cancer out of the high-risk group compared with 4 women dying out of the same high-risk group who do not opt for the procedure. Gigerenzer and Edwards wrote that the best way to convey these probabilities is by using the AR alone, or of years but requires additional context to understand what the numbers could mean to an individual. For instance, SEER notes that the lifetime risk is based on a cancer-free population and refers to individuals in that group being more likely to die from breast cancer than from another disease. Mortality from breast cancer has declined by approximately 2.3% per year, with mammography contributing to improved survival.

Risk Rates

The breast cancer risk associated with an average American woman takes into account other factors, such as absolute rates and the age-specific rates seen in Table 2. The NCI defines absolute risk (AR), as applied to cancer risk, as the percentage of people who will be diagnosed with a disease during a certain time period. An AR lies between the “0” of never to the certainty of “1,” with the probability of an event not happening derived from subtracting the AR from 1.

To put these probabilities in perspective, the AR a woman faces for breast cancer declines with age, based on fewer years of life left and a dwindling number of individuals included in the group risk calculation. This is true even though age-specific risks increase with age. Therefore, AR has more to do with the size of a comparison group than with an individual’s risk.

An example of AR that the NCI reports is age-specific rates; these numbers represent a breakdown of the ages at which women with breast cancer received their diagnoses:

- Approximately 0.0% of women receive a diagnosis when younger than age 20 years.
- 1.9% at 20 to 34 years.
- 10.5% at 35 to 44 years.
- 22.5% at 45 to 54 years.
- 23.7% at 55 to 64 years.
- 19.6% at 65 to 74 years.
- 16.2% at 75 to 84 years.
- 5.5% at aged 85 years and older.

Overall, the age-adjusted incidence rate stands at 123.8 per 100,000 women per year in the United States expected to receive a breast cancer diagnosis. SEER describes the age-adjusted rate as a “statistical method allowing comparisons of populations that takes into account age-distribution differences between populations,” such as the age spans above.

Table 1: Lifetime Probability of Breast Cancer

<table>
<thead>
<tr>
<th>%</th>
<th>Years</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4</td>
<td>1997 to 1999</td>
<td>1 in 7</td>
</tr>
<tr>
<td>13.5</td>
<td>1998 to 2001</td>
<td>1 in 7</td>
</tr>
<tr>
<td>13.4</td>
<td>1999 to 2001</td>
<td>1 in 7</td>
</tr>
<tr>
<td>13.2</td>
<td>2000 to 2002</td>
<td>1 in 8</td>
</tr>
<tr>
<td>12.7</td>
<td>2001 to 2003</td>
<td>1 in 8</td>
</tr>
</tbody>
</table>

Table 2: Individual Probability of Breast Cancer by Age

<table>
<thead>
<tr>
<th>Age Range (years)</th>
<th>%</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 to 39</td>
<td>.43</td>
<td>1 in 233</td>
</tr>
<tr>
<td>40 to 49</td>
<td>1.44</td>
<td>1 in 69</td>
</tr>
<tr>
<td>50 to 59</td>
<td>2.63</td>
<td>1 in 38</td>
</tr>
<tr>
<td>60 to 69</td>
<td>3.65</td>
<td>1 in 27</td>
</tr>
</tbody>
</table>
In regard to screening mammography, the AR would refer to the number of women who would need to receive a screening mammogram to save 1 life. The relative risk represents women dying of breast cancer without having been screened.

Misperceptions also can affect how women understand the risks and benefits of mammography, breast cancer treatments and preventive measures. In a 2003 study that asked medical students to decide theoretically if their mothers had breast cancer whether the women should undergo chemotherapy, the absolute survival benefit was the most effective method to convey risk, according to Chao and colleagues.

Established Risk Factors

Through clinical trials and epidemiological studies, and despite common misperceptions about risk, researchers have established a list of factors known to influence breast cancer risk. Those variables include later age at first birth or never giving birth (nulliparity), which may be factors in approximately 29.5% of breast cancer cases in the United States; higher income for 18.9%; and a family history of breast cancer for 9.1%, according to a 1995 study. Madigan et al wrote that these underlying risk factors considered together may be associated with up to 41% of all breast cancer cases in the United States. This leaves more than one-half of breast cancer causes unknown, suspected or disproved.

The NCI and other government agencies have established that the following factors (grouped by suspected inherent, genetic or environmental causality) increase risk of breast cancer diagnosis:

- Age, with the greatest risk for women occurring at aged 50 to 69 years.
- Having a number of first-degree relatives with breast cancer (mother, sister, daughter); risk increases for 2 or more first-degree relatives.
- Previous radiation therapy to the chest to treat childhood cancer, with risk beginning 8 years following treatment.
- Combined hormone replacement therapy.
- Age at the time of the first live birth of 35 years or older or nulliparity.
- A history of breast cancer.
- The number of breast biopsies performed, because of the underlying findings that prompted the biopsies, or a finding of atypical hyperplasia on a biopsy.
- Recent migration from a region of low breast cancer rates to one of higher rates related to environmental factors in the new region.
- Higher income bracket, with risk possibly related to increased use of screening and greater chance of diagnosis.

Factors associated with a decreased breast cancer risk include:

- Regular exercise, which contributes to an average 30% to 40% relative risk reduction.
- Early pregnancy or full-term birth before aged 20 years; this decreases risk about 50% compared with nulliparous women and those who give birth after aged 35 years.
- Breast-feeding, with a reduced RR of 4.3% for every 12 months of breast-feeding, plus an additional 7% for each birth.

Inherent causality applies to any physiological state that prolongs or decreases endogenous (internal) estrogen exposure and may affect a woman’s risk. Examples include a first full-term birth at aged 35 years or older, a later menarche and menopause.

Singletary noted that the most publicized risk factors are moderate risks that should not be included in the risk profile of a woman being counseled because of genetics or family history. Those risky behaviors and conditions include use of HRT for at least 5 years (RR 1.3); nulliparity, (RR ~1.7) and a daily alcohol intake of 2 drinks (RR 1.2).

Genetic Risk Factors

Probabilities based on family history and BRCA1 or BRCA2 mutations are more relevant to the decision-making process that precedes decisions on preventive measures. The remedies offered for women with a greater degree of risk include watchful waiting, chemoprevention and prophylactic mastectomy or oophorectomy, removing the ovaries. Oophorectomies and radiation ablation of the ovaries reduce endogenous estrogen and have been used for more than 100 years to treat breast cancer and reduce recurrence.

BRCA Mutations

The NCI estimates that 5% to 10% of women with breast cancer carry germ line mutations, and that their
daughters have a 50% chance of receiving a breast cancer diagnosis in their lifetimes. The RR associated with a family history of breast cancer can be as low as 3, and as high as 200 for a postmenopausal woman with a BRCA mutation.

As researchers analyze the genetics of breast cancer to establish risks related to mutations in the BRCA1 and BRCA2 genes, they are discovering that not all genes carry the same risk characteristics. For example, an ovarian cancer cluster region in the central portion of the BRCA2 gene is associated with a lower risk of breast cancer and a higher risk for ovarian cancer.

Even among the Ashkenazi Jewish community of women, who have the greatest established genetic link to breast cancer, risk varies slightly depending on the type of genetic mutation. And not all breast cancers among women in this lineage are connected to a genetic mutation.

Studies on genetic mutations commonly break down the risks associated with family history based on a greater number of breast and ovarian cancer cases within the family. This occurs even though the risk is similar and a majority of carcinoma is stochastic (random) in nature. Therefore, women in families with fewer cancer diagnoses among primary family members have received less attention, which may have led to incorrect risk assessments, according to Satagopan et al.

To address this apparent oversight, several review articles have concentrated on the genetic mutations that occur in families with only 1 or 2 instances of breast or ovarian carcinoma (a mother, sister, aunt, or grandmother). Satagopan et al estimated the RRs of breast cancer for Ashkenazi Jewish women with the BRCA1 mutation at 21.6 for women younger than age 40 years, 9.6 for women aged 40 to 49 years and 7.6 for women aged 50 years and older. These RRs correspond with a penetrance, or probability, of developing breast or ovarian cancer of 46% at age 70 and 59% at age 80. The rates were lower for women with the BRCA2 gene mutation in non-Ashkenazi Jewish women, with a penetrance of 26% at age 70 and 38% at age 80.

The family history of women of Ashkenazi Jewish descent that might indicate or increase the risk of these germ mutations includes:

- Any first-degree relative diagnosed with breast or ovarian cancer.
- Two second-degree relatives on the same side of the family diagnosed with breast or ovarian cancer.

For women not of Ashkenazi Jewish descent, the likelihood of a BRCA1 or BRCA2 mutation increases with the following familial cancer patterns:

- Two first-degree relatives (mother, daughter or sister) diagnosed with breast cancer, with at least one diagnosed at age 50 years or younger.
- Three or more first-degree or second-degree (grandmother or aunt) relatives diagnosed with breast cancer regardless of age at diagnosis or a combination of first- and second-degree relatives diagnosed with breast cancer and ovarian cancer (one cancer type per person).
- A first-degree relative with cancer diagnosed with bilateral breast cancer or a combination of 2 or more first- or second-degree relatives diagnosed with ovarian cancer regardless of age.
- A first- or second-degree relative diagnosed with both breast and ovarian cancer regardless of age at diagnosis and breast cancer diagnosed in a male relative.

A review by Antoniou et al illustrated how few women with breast cancer carry the BRCA1 and BRCA2 gene mutations. In 22 studies with 6965 female breast cancer cases, 176 male breast cancer cases and 998 ovarian cancer cases, the authors found only 298 gene mutation carriers. In the general population, about 1 in 300 to 500 individuals carry clinically important mutations. Research has shown that a woman with a clinically proven mutation faces an estimated 26% to 81% breast cancer risk and 10% to 46% ovarian cancer risk.

Routine referral for genetic counseling or testing for BRCA1 and BRCA2 mutations is recommended only for women with the specific family patterns noted above, and genetic counseling alone is recommended for those with known BRCA mutations. In a 2005 statement, the USPSTF noted that these women could benefit from professional help in making decisions about testing and prophylactic treatment.

Prevention of breast cancers linked to BRCA1 and BRCA2 germ line mutations primarily involves bilateral prophylactic mastectomy and oophorectomy. However, additional options may include chemoprevention with selective estrogen receptor modulators and prevention through diet and lifestyle changes. Surveillance with clinical breast exam, mammography and possibly magnetic resonance (MR) imaging helps reduce morbidity and mortality.

Chemoprevention with tamoxifen carries its own risks of adverse events that can outweigh the benefits.
Family History

In the general U.S. population, a family history of breast cancer and the associated risk vary widely. Generally, the younger a first-degree relative is when a diagnosis is made, the greater the risk is for others in the family.50,53 Whether the affected relatives are first-degree or second-degree and the number of family members who have received a breast cancer diagnosis also increase the risk.34,53 In a study by Sattin et al, the authors estimated an annual incidence rate of 828.2 cases (95% CI, 249 to 2717.8) per 100 000 women aged 20 to 40 years when both a mother and sister have been diagnosed with breast cancer.53 This compares with 60.9 cases (95% CI, 58.6 to 63.3) per 100 000 women without a family history of breast cancer.53

In addition, the researchers found that a woman with a first-degree relative who had unilateral breast cancer had a higher breast cancer risk than those whose first-degree relative had bilateral breast cancer.53 The estimated annual incidence per 100 000 for women aged 20 to 39 years with a first-degree family history was 51.9; 115.1 for women aged 40 to 54 years and 138.6 for those aged 45 to 54 years. The annual incidence rates for women aged 20 to 39 years who had a second-degree family history were 12.1 per 100 000; 19.2 for women aged 40 to 44 years old and 92.4 for women aged 45 to 54 years.53

Atypical hyperplasia, lobular carcinoma in situ (LCIS) and ductal carcinoma in situ (DCIS) are conditions in which a greater number of abnormal cells are present overall. In LCIS, the cells are in breast lobules; in DCIS, they are in breast duct linings. Hyperplastic cells can be scattered.54

The widespread use of mammography has increased DCIS findings, considering the condition rarely presents as a palpable mass and the majority of DCIS lesions are discovered through screening. The condition has a relative risk of 17.3 and now accounts for almost one-fifth of all the invasive and noninvasive breast tumors diagnosed yearly in the United States.54

Several controversies surround DCIS, including concerns about whether the condition is overtreated, based on its noninvasive status. Despite this uncertainty and the estimate of an associated 17-fold increase in invasive cancer risk, mastectomy has been the favored treatment.53 DCIS presents as a multicentric disease in 30% of cases, with a residual tumor prevalence of 40% after wide excision alone and a recurrence rate of 25% to 50%, with one-half of recurrences diagnosed as invasive cancer.54

The current treatment options for DCIS, in addition to a total mastectomy with or without tamoxifen therapy, include breast-conserving surgery and radiation therapy, with or without tamoxifen therapy or breast-conserving surgery alone.54

LCIS is an indicator of greater risk for breast cancer, with an RR of 16.42,64 Lumpectomy is the standard treatment for LCIS, with tamoxifen recommended for women at high risk of developing an invasive malignancy based on genetics or family history.42

Environmental Risks

The established environmental risks of alcohol use and obesity may appear remediable. However, whether changing an environmental factor or a habit affects a woman’s risk is difficult to determine when research data are not explained well. For example, a RR of 2 means that a woman is about 2 times as likely to develop breast cancer than someone who is not at risk (in this case, a woman who is not exposed to the environmental factor), which is negligible.37

Even the breast cancer risk associated with radiation therapy affects only about one-fifth of the women who undergo treatment while younger than aged 30 years. In other words, modern risk statistics cannot predict with a 95% certainty an individual’s cancer future. The
Breast Cancer Risk

Women who receive radiation treatments at aged 30 years or younger face a greater risk of breast cancer than women who were older than 30 years at the time of treatment. Based on a dose-dependent estimate, 12% to 20% of cancer survivors who underwent moderate to high dose chest radiation treatments are diagnosed with breast cancer by aged 45 years. In a 2009 study of female survivors of Hodgkin lymphoma who received mantle field radiation that included the axillary, mediastinal and neck nodes, 122 of the 1122 survivors had breast cancer at 5 years following radiation. This represented an absolute excess risk of 57 per 10 000 patients per year and an overall cumulative incidence of 19% at 30 years after treatment, with an incidence increase of 26% for women who were treated for cancer at aged 21 years or younger.

Travis et al found a 3.2-fold increased risk of breast cancer for women treated with ≥ 4 Gy of radiation for Hodgkin lymphoma, while combining radiation therapy and alkylating agents reduced the risk to 1.4-fold. Any radiation dose of > 4 Gy increased the risk of breast cancer in the area originally irradiated. The authors concluded that hormonal stimulation appears to precipitate secondary breast cancer based on a noted decreased risk of cancer associated with ovarian damage from radiation or chemotherapy.

Mammography screening is critical for women who have received radiation. The Children’s Oncology Group recommends an annual mammogram starting 8 years after chest radiation treatments or at aged 25 years. This recommendation takes into account an average 8-year to 15-year latency span for women who underwent radiation therapy as children or young adults.

Lifestyle Risks

The greater breast cancer risk faced by women who move from a geographical area of low breast cancer incidence to one with a higher incidence indicates an important environmental aspect of the disease. This is illustrated by the effect a Western high-fat diet has in raising the breast cancer incidence rates of women who migrate to an industrialized nation from a society with indigenous low-fat foods.

Along with high-fat diets, the environmental factors suspected of increasing breast cancer risk include severe calorie restriction when an individual is young that affects endogenous hormone levels, alcohol consumption and chemical exposures. One theory holds that the amount of fat a woman consumes is tied to higher disposable incomes and greater alcohol consumption, which combine to increase the risk of many cancers. However, studies have only recently substantiated the link between alcohol and cancer risk, and so far the research into nutritional factors of causality have found few statistically significant ties.

Therefore, current prevention efforts often focus more on how to lower the prevalence of overweight and obese women in the United States than the nutrients and vitamins in individuals’ diets. Research in this area is concentrating on how environmental factors such as high energy intake, lack of exercise and obesity increase breast cancer risk.

Energy Intake and Obesity

An estimated 65.7% of adult Americans were considered overweight or obese in 2002, with obesity and a sedentary lifestyle contributing to up to one-third of several major cancers. Extra weight affects breast cancer risk and increases mortality from the disease because of, many believe, an increase in circulating estrogen from fat tissue. A review of the British Million Women Study found that obesity (defined in the study as a body mass index [BMI] > 25 kg/m²), raises the RR of 10 types of cancer, including breast cancer, with an RR of 1.4 for postmenopausal women. The other types include endometrial, renal, ovarian, esophageal and pancreatic cancer and leukemia, multiple myeloma, and non-Hodgkin lymphoma.

BMI is calculated as the ratio of weight in kilograms to height in meters squared. Guidelines set by the National Institutes of Health (NIH) provide 4 weight categories based on that ratio: <18.5, underweight; 18.5 to 24.9, healthy; 25.0 to 29.9, overweight; and >30.0, obese. An estimated 11 000 to 18 000 deaths from breast cancer might be avoided by women in the United States maintaining a healthy BMI throughout adulthood. The risk of breast cancer decreases slightly for premenopausal women considered obese, but increases following menopause. On the other end of this spectrum, researchers are finding that severe food deprivation combined with stress also may increase breast cancer risk. Research with animals has shown that calorie restriction may have an anticancer effect. However, a recent study...
found that adding the stresses of internment, younger age (defined as being born in 1940 to 1945) and starvation might explain one aspect of a higher breast cancer incidence among European-born Jewish survivors of World War II.65

An accompanying editorial noted that the Jewish internment camp survivors faced severe calorie restriction (220 to 800 kcal/d) combined with protein and micronutrient deficiencies.66 In contrast, the animal studies that consistently report lower cancer risk based on restricting calories are more of a moderate reduction “coupled with adequate nutrition and a controlled physical environment.”66

Alcohol

Several studies in the past decade verified that alcohol affects breast cancer risk and recurrence and greater consumption is associated with ER+ tumors.45,66,67 The mechanisms suspected in this risk cover possible carcinogenic triggers such as acetaldehyde, a reduction in essential nutrients and a distortion of DNA repair.45

Alcohol consumption of an extra 10 g (about one alcoholic beverage) daily increases the RR of breast cancer to 7.1 (95% CI, 5.5-8.7), according to a 2002 analysis of an estimated 80% of studies published worldwide on cancer risks related to alcohol and tobacco use.66

A 2006 review of the Women’s Health Study concurred on the increased risk, finding a moderate increase in the RR, to 1.32 (95% CI, .96-1.82) for all breast cancers, and 1.43 (95% CI, 1.02-2.02) for invasive breast cancer, when women consume more than 30 g per day of alcohol, vs none.67

In industrialized countries, up to 4% of breast cancers may be attributed to alcohol consumption, with a cumulative incidence of breast cancer estimated at 8.8 per 100 women for nondrinkers; 9.4 for 1 alcoholic drink per day; 10.1 for 2; 10.8 for 3; 11.6 for 4; 12.4 for 5; and 13.3 per 100 women for 6 drinks per day.66

Hormone Replacement Therapy

The debate regarding the risks and benefits of combination HRT for postmenopausal women continues, even though many governmental agencies list the medication as a known risk for breast cancer.

Numerous epidemiological studies have assessed the cancer risk for women who take estrogen alone or combined with progestin. The consensus shows that combined HRT increased breast cancer risk proportionally to how long a woman took the medication, but the findings for estrogen alone are inconclusive.68 In reviewing the studies up to 2003, Lee et al found a statistically significant increase in breast cancer risk of 5.2% in the United States vs 7.9% in Europe.68

The results of the Women’s Health Initiative clinical trial in 2002 indicated a greater risk of coronary heart disease for women who received a daily combination of conjugated equine estrogen and progestin.69 The NCI contends that a subsequent drop in HRT use also led to a drop in breast cancer rates, providing enough evidence to rate HRT as a known breast cancer risk. In 2003, the U.S. Food and Drug Administration drafted guidelines for labeling products with a warning that HRT was only appropriate for short-term use.69

Age-specific invasive breast cancer rates decreased across the board for women aged 45 years and older between 1999 and 2003. The sharpest declines, which occurred in 2002 and 2003, were confined to women aged 50 to 69 years.1 The incidence rates per year dropped 4.1% (95% CI, 0.2%-7.8%) from 2000 to 2003 for tumors ≤2 mm; and 3.1% (95% CI, 1.2%-5.0%) from 1999 to 2003 for localized disease. Jemal et al found no decrease in larger tumors or advanced stage disease during these time periods.1 They concluded that mammography screening could be responsible for the overall decrease, but that a drop in HRT use might be credited for the sharper decrease in incidence for women aged 50 to 69 years with predominantly ER+ tumors.1

These conflicts among findings highlight why Blumling and Tavris reported last spring in a review that reports of HRT and disease risk have been touted as more serious than many actual studies’ findings show.70 The breast cancer risk for conjugated equine estrogen is relatively low (RR 0.77), and estrogen/progestin has an RR of 1.24 to 1.26.70 Researchers have calculated that a 50-year-old woman who takes HRT for 10 years increases her AR of breast cancer to 4%, compared with 2% if she does not take the medication.70

Breast Density

Studies dating back to 1976 indicate that mammographic breast density, described as a higher proportion of stromal and epithelial breast tissue vs fat, is closely tied to breast cancer risk.47 Only aging and inherited BRCA1 and BRCA2 mutations represent greater risk factors.72 More than 40 studies have verified, through qualitative and quantitative estimates, that density is an independent risk factor of breast cancer, according to Kelemen et al.71

Kelemen et al emphasized that breast density changes throughout life, with the greatest reduction occurring...
between premenopause and postmenopause and that postmenopausal hormone replacement lessens the effect. In addition, women who undergo a surgical menopause tend to have a higher breast density premenopause and a steeper decline in density as they age.

Ongoing research into mammographic density points to it as an important aspect of risk, according to researchers. Studies have established that women with breast density of > 50% to 75% glandular tissue have a 2 to 6 times greater risk for breast cancer vs women with fattier breasts.

Additionally, the epithelium and stroma that appear radiographically light because they are denser in images challenge mammographers and radiologists. The mammography components that can affect density assessments include compression, positioning, exposure and the amount of breast tissue captured.

When he first identified density as a risk factor, Wolfe developed the following classifications:

- N1. Parenchyma composed primarily of fat with, at most, small amounts of dysplasia and no visible ducts.
- P1. Parenchyma composed mostly of fat with prominent ducts in the anterior portion that compose up to 25% of the breast volume. A thin band of ducts might extend into a quadrant.
- P2. Severe involvement of the breast parenchyma (very little fat and a great deal of dense tissue) with prominent ducts occupying more than 50% of the breast volume.
- DY. Severe involvement with dysplasia.

This classification system fell out of use during the 1970s, in part because it was limited to 90° lateral and craniocaudal projections without spot compression or magnification techniques. However, many other researchers expanded on the classification system to test Wolfe’s theory of risk related to density and refine categories as mammography improved visualization of denser areas.

The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) Atlas replaced the Wolfe classifications in the United States with categories of:

1. Almost entirely fatty.
2. Scattered fibronodular tissue.
3. Heterogeneously dense.
4. Extremely dense.

Researchers are studying the diets, nutrients, medications and exercise that may decrease or increase breast density. It is believed that greater density may reflect an underlying process that increases the risk of stromal and epithelial cellular proliferation, DNA mutations, embryonic alterations and carcinogenesis. The factors known to decrease mammographic density include increasing age, menopause, elevated BMI and early pregnancy. Scientists theorize that factors that increase breast density reflect hormonal changes and growth factors that initiate cell division, which are evidenced by an increase in density brought on by HRT and a decrease precipitated by tamoxifen.

Genetic factors could contribute to at least 50% to 75% of breast density differences determined by mammography for women aged 40 to 70 years, with environmental factors accounting for only 20% to 30% (see Figure 2).

Greater breast density is connected to a birth weight of > 4000 g, a taller than average adolescent height at age 12 years, but not above-average weight. Density has an apparent inverse relationship to smoking because of cigarette smoke’s antiestrogenic attributes. Family history, serum insulin-like growth factor 1 in premenopausal women and serum prolactin in postmenopausal women are the most recent risk factors associated with greater breast density.

In turn, a deeper understanding of the molecular structure of breast cancer and its genetic mutations has led to better staging, more accurate treatments and has been essential in refining when and how mammography is used as it relates to breast density.

Breast density affects the sensitivity of mammographic screening because dense tissue reduces the ability to detect cancers by masking lesions. Therefore, the effectiveness of mammography screening programs could be improved if women with higher density breasts were identified prior to screening. Kavanagh et al theorized that focusing screening efforts in this group to identify interval cancers could significantly improve outcomes in this population. Several studies have concluded that almost a 4-fold to 6-fold risk applies to the highest density category, with the risk of interval cancers increasing consistently across the densities at an odds ratio of 4.65 (95% CI, 2.96-7.31).

Reducing Risk

The search for less invasive or alternative breast cancer reduction methods covers a gamut of nutrients, diet, exercise and stress reduction. As one article pointed out, it is unrealistic to expect women of childbearing age to give birth just to lower their risk of breast cancer. Yet the most effective protection is based on
reproductive and hormonal variables such as lactation, giving birth before age 35 years and at least 2 live births, which all reduce endogenous estrogen over a woman’s lifetime.

That is why hundreds of trials and studies on vitamins, diets and fat are testing other avenues of protection and prevention. The nutritional factors explored in the past decade include:

- Fat intake and biomarkers of fat intake.
- Fruits and vegetables.
- Serum antioxidants and carbohydrates.
- Glycemic index and load.
- Dairy foods.
- Vitamin D.
- Soy and isoflavones.
- Green tea.
- Heterocyclic amines, which are formed during cooking of meat.

Nutrition

A majority of the studies that address the effects of diet and exercise on breast cancer risk concentrate on prevention and etiology, according to Kushi et al. Consequently, some of that research has looked into how estrogen receptor cells react to an increase or decrease in estrogen from diet or medication and whether nutrients, exercise or medications affect genetics. Nutrition affects women’s health from childhood through menopause, with too much food or weight...
leading to early puberty and late menopause and too little sustenance delaying puberty and menopause. These same factors also influence a woman’s lifetime risk of breast cancer by limiting or increasing exposure to endogenous hormones.

The dietary patterns studied throughout the world are similar in their division between healthy or prudent diets that emphasize fruits and vegetables and the Western diet that relies on meats and starches, which has been linked to a greater breast cancer risk. In the Shanghai Breast Cancer Study, a diet with a “meat-sweet” pattern was associated with an increased risk of breast cancer in postmenopausal women of 1.3 odds ratio (95% CI, 1.1 to 3.3). Yet other habits such as alcohol consumption and smoking confound the findings.

The Mediterranean diet of vegetables, fruits, seafood, olive oil and sunflower oil was associated with lower breast cancer risk in several recent studies. This held true particularly for ER+ and PR- breast cancer in postmenopausal women. In the same study, the Western diet, characterized as including meat products, French fries, appetizers, rice and pasta, potatoes, legumes, pizza, canned fish, eggs, alcohol, cakes, mayonnaise, butter and cream, carried a hazard ratio of 1.20 (95% CI, 1.03 to 1.38; P = .007). However, a prospective study by Forman in 2005 that assessed more than 3500 invasive breast cancer cases from case-control studies worldwide found no protective effect in a greater consumption of fruits and vegetables. The author noted that contributing factors to the studies could have included early symptoms of breast cancer that led to a change in dietary habits and controls who ate more healthily.

Fats and Fat Intake

Dietary fat may help initiate tumor genesis and growth by stimulating the production of endogenous hormonal steroids, modulating immune function and regulating gene expression, according to Thiébaut et al.

The attempt to link dietary fat to a greater breast cancer risk is controversial because the findings of numerous studies are controversial. However, several recent prospective analyses on fat consumption indicate an increase in breast cancer risk from median to high fat intake. The risk of postmenopausal invasive breast cancer increased 2-fold across a wide range of self-reported dietary fat intake measured against U.S. Department of Agriculture databases in an analysis of 188,736 postmenopausal women enrolled in the NIH-AARP Diet Health Study.

Another meta-analysis of epidemiological research with the odds ratios from case-control studies and risk from cohort studies showed a moderate association between breast cancer risk and the amount of dietary fat consumed. The highest fat intake carried an RR of 1.11 (95% CI, 0.99 to 1.25).

Vitamins and Beta-carotene

Prevention is the main focus of research into vitamins and their ability to mediate the oxidative processes of cancer initiation and promotion. Although few studies or trials involving vitamins have provided significant findings in terms of cancer prevention, researchers continue to be interested in vitamins because of their antioxidant properties.

Vitamins E and C act as lipid-soluble free radical scavengers in cell membranes, and are known to inhibit nitrosamine, a carcinogenic chemical, from forming. They also strengthen the immune system. Vitamin B supplements, such as folate, B6 and B12, aid DNA synthesis and methylation and appear to reduce breast cancer risk for women who consume a larger amount of alcohol daily, but have minimal effect otherwise in many populations. However, recent studies have shown that too much folate accrued through multivitamins and enriched foods may increase breast cancer risk for postmenopausal women with the 677T allelic variant who consume more than the daily recommended levels.

Vitamin D is a fat-soluble vitamin occurring naturally in some foods or taken as a supplement; sun exposure is the best source. It reduces inflammation and modulates neuromuscular and immune function. Vitamin D combined with calcium derived from food and supplements appears to decrease breast density.

Beta-carotene is cited in a few recent trials as reducing the risk of breast cancer. In approximately 14 studies conducted from 1998 to 2006, high blood serum levels of the provitamin A carotenones, which include beta-carotene, were associated with decreased cancer risk of the mouth, pharynx and larynx but were mostly inconclusive or conflicted concerning breast cancer risk. Most of the data were collected from dietary information, therefore the decrease does not apply to supplements.

Isoflavones

Soybeans are the main source of isoflavones, or phytoestrogens. Scientists theorize that soy may have an anticarcinogenic effect based on its affinity and competition for endogenous estrogens in binding with
estrogen receptors. Studies have not determined whether soy exacerbates breast cancer as a phytoestrogen or is the reason for the lower incidence of breast cancer in countries that eat more of the legume. One review of case-control studies on Asian women showed a 16% risk reduction in breast cancer risk for this population per 10 mg of isoflavones eaten per day.

Green Tea
Multiple studies have concentrated separately on the possible effects of green tea on breast cancer risk to explain the lower cancer rates in populations that consume higher quantities of the liquid. Several have focused on whether tea and soy affect breast density, with a stronger correlation between drinking green tea and reduced density. A meta-analysis of 6 case-control and cohort studies on the effects of green tea found a 27% reduction in breast cancer risk associated with a high intake of green tea.

Exercise
Americans’ sedentary lifestyle, along with all industrialized nations’ reliance on a more energy-dense diet (rich in meat and potatoes) is characterized as an important factor in a higher rate of breast cancer incidence. Some effects of the higher-calorie diet are mediated by exercise, which is believed to reduce breast cancer risk for postmenopausal women who exercise at least 7 hours per week. Physical activity raises the metabolic rate and increases oxygen uptake while also reducing blood pressure and insulin resistance.

Most studies that link weight gain and obesity to breast cancer risk point out that this is the preventive factor women can control most. Obesity is implicated as a risk factor for developing ER+ invasive tumors, along with complications following a breast cancer diagnosis that include recurrence, contralateral spread, wound complications and lymphedema.

Being overweight increases the amount of internal estrogen circulating because the aromatase enzyme increases proportionately with the pounds gained, thereby expanding extraglandular estrogen production. The pathological processes involved in obesity that may cause cells to mutate or proliferate involve inflammation, tumor necrosis factor, transferase growth factor, resistin, interleukin 6, free fatty acids, monocyte chemoattractant protein-1 and leptin.

Conversely, extra weight from age 2 to 15 years appears to reduce a woman’s lifetime risk of breast cancer. However, Ruder et al noted that obesity might be more prevalent today than in an earlier study that showed this connection.

Psychosocial Aspects of Prevention
The psychosocial aspects of prevention center primarily around an understanding of breast cancer risk and prevention, along with attitudes toward mammography screening. Concerns about breast cancer risk both drive women to and prevent them from undergoing regular screening. Severe worry about cancer because of a family history may deter women from adhering to screening guidelines based on denial or efforts to reduce distress, whereas moderate worry is associated with increased screening use. In a 2009 study by Oeffinger et al, childhood cancer survivors with increased breast cancer risk were found to adhere to screening mammography recommendations according to their age and estimated risk.

Childhood survivors of cancer aged 40 to 50 years who previously were treated with radiation therapy appear more likely (76.5%) than survivors aged 39 years and younger (36.5%) to adhere to mammography screening recommendations. However, a physician recommendation encouraged greater screening rate adherence in both study groups, with the percentage of women aged 25 to 39 years who underwent mammography increasing to 76% and an increase to 87.3% adherence for study participants aged 40 to 50 years.

Women at poverty level and those with low and moderate incomes underutilize screening mammography. Additional demographic characteristics of women who tend to underutilize screening include low educational levels, Hispanic ethnicity, age older than 65 years and living in a rural area.

Morbidly obese women also underutilize mammography or fail to adhere to regular screening schedules, which researchers theorize might lead to the higher mortality rate from breast cancer among these women. Heavier women may delay screening because of poor self-esteem and body image, embarrassment, perceived lack of respect from health care providers or to avoid receiving unsolicited weight-loss advice.

A 2006 study determined that a sample of New Hampshire women with a statistically higher BMI were less likely to undergo mammography screening. However, an additional finding from this study relevant to mammographers was that women who adhered to screening guidelines reported they had received more care from radiologic technologists in performing the exam (75.6%) than those who did not adhere to regular.
Women younger than aged 50 years should make the decision to begin regular, biennial screening based on family history, general health and personal values.

■ Screening mammography for women aged 75 years and older should stop because of insufficient evidence of additional benefits vs harms.

■ Halt teaching of breast self-examination to women.

The task force also concluded that current evidence does not support digital mammography or MR imaging to replace film-screen mammography as a screening tool.

The NCI released a statement last fall to reassure the general public that the current mammography screening standards would continue. However, the task force recommendations can influence decisions made by managed care companies and other entities that pay for mammography screening.

Conclusion

As researchers identify the causes of nearly one-half of all breast cancer cases, women need to understand the risks and ways they can reduce them. Mammographers also need to understand risks and the wealth of conflicting information and how to reassure confused or wary patients. In the past 20 years, as incidence and mortality have decreased, more emphasis has been placed on how to prevent breast cancer. Researchers have delved into the role of micronutrients, lifestyle changes and genetics in an effort to stop cancer cells before they invade and metastasize. Some of these risk factors are more remediable than others. Mammography screening remains one of the few proven methods to address breast cancer early to reduce morbidity and mortality.

References

39. Fagerlin A, Zikmund-Fisher BJ, Ubel PA. “If I’m better than average, then I’m ok?”: Comparative information influences beliefs about risk and benefits. Patient Educ Couns. 2007;69(1-3):140-144.

Robin L. Anderson is an Albuquerque, NM-based medical writer and editor with a bachelor’s degree in journalism and economics. She has written Directed Readings for *Radiologic Technology* and *Radiation Therapist*, along with courses for the Philips Online Learning Center.

Reprint requests may be sent to the American Society of Radiologic Technologists, Communications Department, 15000 Central Ave SE, Albuquerque, NM 87123-3909, or e-mail communications@asrt.org.

©2010 by the American Society of Radiologic Technologists.
To receive Category A continuing education credit for this Directed Reading, read the preceding article and circle the correct response to each statement. Choose the answer that is most correct based on the text. Transfer your responses to the answer sheet on Page 482M and then follow the directions for submitting the answer sheet to the American Society of Radiologic Technologists. You also may take Directed Reading quizzes online at www.asrt.org.

Effective October 1, 2002, new and reinstated members are ineligible to take DRs from journals published prior to their most recent join date unless they have purchased a back issue from ASRT. Your access to Directed Reading quizzes for continuing education credit is determined by your area of interest. For access to other quizzes, go to www.asrt.org/store.

*Your answer sheet for this Directed Reading must be received in the ASRT office on or before this date.

1. Wolfe linked _______ to an increased chance of invasive breast cancer and recurrence.
 a. regular exercise
 b. poor diet
 c. larger breast size
 d. higher breast density

2. During _______, undifferentiated cells in the breast begin to develop into ducts and lobules that carry milk for lactation.
 a. fetal development
 b. puberty
 c. a woman’s first pregnancy
 d. menses each month

3. The most prevalent estrogens secreted by the ovaries include:
 1. progesterone.
 2. estradiol.
 3. estrone.
 a. 1 and 2
 b. 1 and 3
 c. 2 and 3
 d. 1, 2 and 3

4. The following features indicate a likely genetic component to breast cancer except:
 a. older than age 40 years at tumor diagnosis.
 b. rare histology.
 c. multifocality within a single organ.
 d. bilateral primary tumors in paired organs.

5. Tumors with a dominant BRCA2 orientation are generally estrogen receptor negative (ER-) and progesterone receptor negative (PR-).
 a. true
 b. false

6. _______ clinical trials primarily are conducted by private practice physicians rather than in an academic facility.
 a. Controlled
 b. Community-based
 c. Double-blind
 d. Epidemiological

Continued on next page
Directed Reading Continuing Education Quiz

7. The term that describes the state of being, or having, a disease or condition is _______.
 a. incidence
 b. prevalence
 c. absolute risk
 d. relative risk

8. _______ incidence rates focus on the first instances of a particular cancer, with the number of the total population as the denominator.
 a. Risk-adjusted
 b. Age-adjusted
 c. Absolute
 d. Relevant

9. Mortality from breast cancer has declined by about _______ % per year.
 a. 0.3
 b. 2.3
 c. 4.3
 d. 6.3

10. According to the Directed Reading, absolute risk value has more to do with:
 a. an individual’s risk.
 b. the size of the group being compared.
 c. specific characteristics.
 d. ratios.

11. Having a first birth at a later age and nulliparity may be factors in approximately _______ % of breast cancer cases in the United States.
 a. 9.5
 b. 19.5
 c. 29.5
 d. 39.5

12. The _______ community of women has the greatest established genetic link to breast cancer.
 a. Asian American
 b. Latin American
 c. Ashkenazi Jewish
 d. Afro-Caribbean

13. Possible adverse events associated with chemoprevention therapy with tamoxifen for women at high risk for ER-positive breast cancer include:
 1. pulmonary embolism.
 2. deep venous thrombosis.
 3. endometrial cancer.
 a. 1 and 2
 b. 1 and 3
 c. 2 and 3
 d. 1, 2 and 3

14. _______ presents as a multicentric disease in 30% of cases, with a residual tumor prevalence of 40% after wide excision alone.
 a. Atypical hyperplasia
 b. Inflammatory breast cancer
 c. Lobular carcinoma in situ
 d. Ductal carcinoma in situ

15. Based on a dose-dependent estimate, _______ % to _______ % of cancer survivors who underwent moderate to high dose chest radiation treatments are diagnosed with breast cancer by age 45 years.
 a. 2; 10
 b. 2; 20
 c. 12; 20
 d. 12; 30

Continued on next page
16. According to the Directed Reading, extra weight affects breast cancer risk and increases mortality from the disease because:
 a. fat increases breast density.
 b. larger breasts are more difficult technically to image.
 c. of an increase in carcinogenic cells in fat tissue.
 d. of an increase in circulating estrogen from fat tissue.

17. A review of the British Million Women Study found that obesity raises the relative risk (RR) of 10 types of cancer, including breast cancer.
 a. true
 b. false

18. Several studies in the past decade verified that alcohol affects breast cancer risk and recurrence and greater consumption is associated with _______ tumors.
 a. ER-
 b. ER+
 c. PR-
 d. PR+

19. Severe involvement of the breast parenchyma with prominent ducts occupying more than 50% of breast volume is considered Wolfe’s breast density classification _______.
 a. N1
 b. P1
 c. P2
 d. DY

20. Too much food in childhood produces the lifetime hormonal effects of _______ and _______.
 a. early puberty; early menopause
 b. early puberty; late menopause
 c. delayed puberty; early menopause
 d. delayed puberty; late menopause

21. Which of the following are true regarding a potential link between breast cancer risk and dietary fat?
 1. Findings of numerous studies are controversial.
 2. Several recent prospective analyses on fat consumption indicate an increase in breast cancer risk from low fat intake.
 3. The risk of postmenopausal invasive breast cancer increased 2-fold across a wide range of self-reported dietary fat intake in an analysis of nearly 190 000 women.
 a. 1 and 2
 b. 1 and 3
 c. 2 and 3
 d. 1, 2 and 3

22. Recent studies showed that too much _______ accrued through multivitamins and enriched foods may increase breast cancer risk for certain postmenopausal women with the 677T allelic variant.
 a. vitamin A
 b. vitamin D
 c. folate
 d. isoflavone

23. According to the Directed Reading, exercise can reduce breast cancer risk for women who exercise at least _______ hours per week.
 a. 1
 b. 3
 c. 7
 d. 15

24. Moderate worry about cancer because of family history is associated with:
 a. increased screening use.
 b. no change in use of screening.
 c. lower adherence to screening guidelines.
 d. total avoidance of screening.

Continued on next page
25. The United States Preventive Services Task Force released guidelines in 2009 that included all of the following recommendations except:
 a. biennial screening mammograms for women aged 50 to 75 years.
 b. stopping screening mammography for women aged 65 years and older.
 c. that women younger than age 50 years should make the decision to begin biennial screening based on family history, general health and personal values.
 d. halting teaching of breast self-examination to women.

For your convenience, the evaluation and answer sheet for this Directed Reading now immediately follow the quiz. Just turn to Pages 481M and 482M.
Directed Reading Evaluation
Understanding Breast Cancer Risk

10803 - 03
311209

Thank you for taking the time to complete this survey. Your opinion helps us serve you better. Your comments will remain confidential and will not affect the scoring of your Directed Reading (DR) test. Choose only ONE response for each question. Use a blue or black ink pen. Do not use felt tip markers. Completely fill in the circles.

1. What is your primary area of practice?
 - Administration/Management
 - Education
 - Quality Management
 - RIS/HIS/Information Systems
 - Bone Densitometry
 - Magnetic Resonance
 - Radiation Therapy
 - RN
 - Cardiovascular-Interventional
 - Mammography
 - Radiography
 - Sonography
 - Computed Tomography
 - Nuclear Medicine
 - Research
 - Other

2. Which of the following best describes the highest educational level you have attained?
 - Student who has not yet taken Registry exam
 - Associate degree
 - Master's degree
 - Certificate
 - Bachelor's degree
 - Doctoral degree (e.g., Ph.D. or Ed.D.)

3. Why did you choose to complete this DR?
 - Interested in the topic
 - Topic pertained to my area of practice
 - Other
 - DR had the right number of CE credits
 - Needed CE credits immediately

4. How relevant is this DR to your practice?
 - Extremely relevant
 - Very relevant
 - Relevant
 - Somewhat relevant
 - Not relevant

5. How beneficial is this DR to your professional or personal development?
 - Extremely beneficial
 - Very beneficial
 - Beneficial
 - Somewhat beneficial
 - Not beneficial

6. How would you rate the level of difficulty of this DR?
 - Too difficult
 - Somewhat difficult
 - Just the right level
 - Somewhat easy
 - Too easy

7. How would you rate the length of this DR?
 - Too long
 - Somewhat long
 - Just the right length
 - Somewhat short
 - Too short

8. Did this DR meet your expectations?
 - Yes
 - No
 - Partially

9. Would you recommend this DR to a colleague?
 - Yes
 - No

10. Overall, how valuable are the Directed Readings to you?
 - Very valuable
 - Considerably valuable
 - Valuable
 - Slightly valuable
 - Not very valuable

If you have comments about this Directed Reading, please write them below or send them separately to Ellen Lipman, Director of Professional Development, ASRT, 15000 Central Ave SE, Albuquerque, NM 87123-3909 or elipman@asrt.org.
Understanding Breast Cancer Risk

Expires: June 30, 2012
Approved for 1.5 Category A CE Credits

A passing score is 75% or better.
Take the quiz online at www.asrt.org for immediate results and your CE certificate.
If you don't have Internet access, mail your answer sheet to ASRT, PO Box 51870, Albuquerque, NM 87181-1870.
ASRT must receive the original answer sheet before the quiz expires and before the end of the CE biennium for which you want credit.
New or rejoining members cannot take DR quizzes from journals published before their most recent join date unless they purchase access to the DR quiz.

Identification Section
We need your Social Security number to track your CE credits. Please fill in your SSN in the boxes on top, then fill in the circle corresponding to each number under the box. The circles must be filled in accurately.

Member Information Section
To ensure proper credit please PRINT the following information.
Name ___________________________
Address ___________________________
City ______________________________
State__________ ZIP________________
Work Phone_________________________
Home Phone________________________

CE Answers Section
USE A BLUE OR BLACK INK PEN. Completely fill in the circles.

Get immediate Directed Reading quiz results and CE credit when you take your test online at www.asrt.org/DRQuiz.

Note: For true/false questions, A=true, B=false.

1 o o o o o 11 o o o o 21 o o o o
2 o o o o o 12 o o o o 22 o o o o
3 o o o o o 13 o o o o 23 o o o o
4 o o o o o 14 o o o o 24 o o o o
5 o o o o o 15 o o o o 25 o o o o
6 o o o o o 16 o o o o
7 o o o o o 17 o o o o
8 o o o o o 18 o o o o
9 o o o o o 19 o o o o
10 o o o o o 20 o o o o

No Photocopies Accepted
Study Tests RFID Tag Safety

Researchers in Switzerland recently tested how radio frequency identification (RFID) devices interact with computed tomography (CT) and magnetic resonance (MR) imaging. RFID technology has been used in hospitals to track blood bags, drugs, dispensers and other small containers or documents. The technology also has been used in the design of patient wristbands.

Researchers at the department of surgery of the Hospital of the Canton of St Gallen in Switzerland tested 2 types of RFID transponders by attaching each to a cardboard box and conducting MR and CT scans of the tags. The group was interested in determining potential effects of scanning on the tags’ performance. Even after exposing some tags to 2 hours of 1.5 or 3.0 T scanning, there was no loss of function or data alteration in the RFID tags.

In addition, researchers attached an RFID tag to the skin of a volunteer near the wrist and conducted a scan to analyze image quality and signal loss. The tags resulted in minimal artifacts (see Figure) of a shadowing effect. However, the authors determined that the shadows did not interfere with the diagnostic quality of the images. Finally, the researchers conducted tests to determine whether placement of the tag near a patient’s skin might cause tissue temperatures to rise. They found temperatures increased no more than 1.5º C.

The authors concluded that patients can safely wear the studied RFID wristbands in 1.5 T and 3 T MR scanners. The study appeared in the February 2, 2010, online journal Patient Safety in Surgery (www.pssjournal.com).

Figure. Qualitative image artifacts. MR imaging findings in a volunteer with the RFID tags positioned on the dorsum of the wrist (A, B) and on the volar aspect of the wrist (C, D). Axial T1-weighted spin-echo MR image (600/13; number of signals acquired, 1; field of view, 90 mm) shows only minimal geometric distortion and susceptibility artifacts on skin and underlying subcutaneous tissue (arrowheads in A and C). Axial T2-weighted Flash 2-D gradient-echo MR image (400/15; number of signals acquired, 2; field of view, 90 mm) shows increased susceptibility artifacts on skin and underlying subcutaneous tissue and tendons (arrows in B and D). Interpretation of articular structures is not compromised. Image courtesy of BioMed Central. Steffen T, Luechinger R, Wildermuth S, et al. Safety and reliability of radio frequency identification devices in magnetic resonance imaging and computed tomography. Patient Saf Surg. 2010;4(2):1-9. www.pssjournal.com/content/pdf/1754-9493-4-2.pdf. Accessed March 31, 2010.
Myke Kudlas, MEd, R.T.(R)(QM), is vice president of education and research of the American Society of Radiologic Technologists. Teresa Odle, BA, ELS, is a freelance writer based in Albuquerque, NM, and formerly the editor of Radiologic Technology.

An ASRT task force on forensic radiography guided the research and development of a white paper on forensic radiography in the United States. This special report summarizes the white paper findings. The complete paper can be found at www.asrt.org > Publications > White Papers.

The State of Forensic Radiography

In 1896, Judge Owen E Lefevre of the District Court of Denver, Colorado, became the first U.S. judge to admit radiographs into evidence in a civil case,’ stating that, “…Modern science has made it possible to look beneath the tissues of the human body, and has aided surgery in the telling of the hidden mysteries. We believe it to be our duty...to so consider it in admitting in evidence a process known and acknowledged as a determinate science.”

The early lead of Judge Lefevre and 20th century courts served as the basis for today’s use of imaging examinations in forensic examinations and as legal evidence. Forensic radiography is more than imaging of human remains or bullet fragments; it is the application of diagnostic imaging technology and examinations to questions of law. In the United States, however, the definition, scope and use of forensic radiography examination results are poorly described (see Box 1). Although radiography is one of the most common scientific methods used to accumulate and analyze forensic evidence, forensic radiography is not recognized formally as a forensic science discipline in the United States.

Forensic Radiography Task Force

In 2007, the ASRT formed a Forensic Radiography Task Force, the purpose of which was to gain recognition for forensic radiography in the United States and to encourage development of continuing education in forensic sciences for radiologic technologists. Representatives of forensic radiography practice and education discussed technologist membership in the American Academy of Forensic Sciences, international recognition of forensic radiography, educational opportunities in forensic radiography and responses to U.S. disasters through regional Disaster Mortuary Operational Response Teams, or DMORT.

The task force members (see Box 2) designed an ASRT Forensic Radiography Survey that was sent to all 720 National Association of Medical Examiners (NAME) members in September 2008. A total of 77 NAME members responded to questions about radiographic equipment and performance, interpretation and quality of radiographic procedures at their facilities. Most medical examiners (88.3% [95% CI, 82.3%-94.3%]) indicated that images were produced at their facilities. The survey results were shared with NAME and distributed to task force members.

In March 2009, task force representatives met with forensic radiographers and educators in the United Kingdom. The U.K. radiographers shared information on equipment, maintenance, documentation, forensic radiography guidelines and protocols and education programs (Connie Mitchell, MA, R.T.(R)(CT), assistant professor and radiography program director, Nebraska Medical Center School of Allied Health Professions; and Linda K Holden, MS, R.T.(R)(QM), RDMS, FASRT, director of radiography department, Western Medical Associates in Casper, Wyoming, written communication, March, 2009).

Task force members met again in October 2009 to discuss suggestions for improving the quality of forensic radiography in the United States and plans to develop an educational framework for forensic radiography. They also guided development of a white paper on the state of forensic radiography in the United States, which has been published on the ASRT Web site.

Scope of Forensic Radiography

Regardless of the current state of forensic radiography in the United States, 1 fact remains clear: the law has influenced medicine, and medicine has influenced the law. Specifically, early
use of medical x-rays was influenced when the courts legitimized radiographs as credible evidence and, in turn, radiographs have helped influence legal decisions. As a result, forensic radiography is used not only in postmortem study to help determine cause of death or injury, but also to help identify remains at local medical examiner offices or at the scenes of mass casualties. Radiologic evidence may be used in civil and criminal court cases ranging from fraud to assault. Increasingly, professionals involved in autopsies and identifications rely on use of computed tomography (CT).

Performance of these examinations may take place in a medical diagnostic setting or in a forensic pathology setting. For example, most radiographic examinations of the more than 1 million U.S. victims of child abuse each year occur in the radiology suites that support our nation’s hospital emergency departments. The documentation from these injuries that are performed by radiologic technologists may be used as part of evidence for criminal proceedings, child protection cases or other forms of litigation. Reported incidence of domestic abuse likely is much lower than actual incidence among women. Radiologic technologists may not be aware that they are imaging patients who have injuries resulting from domestic violence. Nevertheless, the actions of imaging professionals may be pivotal in identifying injuries and abuse, as well as to the patients receiving help. The radiologic technologist produces the images and documentation that create a chain of evidence for these patients.

Smuggled drugs may be incidental findings when patients who have been assaulted or in motor vehicle accidents are imaged. Imaging also has been used to detect other ingested materials and to identify nonballistic material in the body, such as knife blades and needles. Functional neuroimaging evidence has been used in criminal cases to support insanity defenses, claims that a defendant was incompetent to stand trial or for pleas of leniency in sentencing; the imaging information is an adjunct to behavioral and clinical data.

Autopsies can help identify cause of death and trace evidence, pinpoint factors contributing to causes of accidents and provide information for relatives of the deceased on hereditary diseases. Radiologic science is used commonly in postmortem autopsies and as part of mass casualty forensic efforts. Examples include human identification, searching for foreign materials in corpses and documenting injuries.

As clinical use of sectional imaging methods such as CT and magnetic resonance (MR) has increased, many forensic centers also have begun to evaluate these technologies as potential tools in postmortem investigations. Worldwide, a small number of centers have adopted protocols that involve routine use of CT and MR scanning at shared mortuary locations. The use of CT has evolved into the virtual autopsy (or “virtopsy”) concept. This involves a complete forensic investigation using CT and MR imaging combined with 3-D reconstruction and postprocessing. The images are taken before the conventional autopsy begins. Multidetector CT (MDCT) scanners increase volume acquisition of data sets along the same axes, which may be measured in 2 and 3 dimensions. The resulting reconstruction closely resembles standard autopsy.

Those who use virtual autopsy have stated that postmortem CT is a noninvasive alternative to standard or refused autopsy. An invasive autopsy may be refused by the deceased person’s family, often based on religious doctrine. Researchers still are comparing virtual autopsy with standard autopsy results, as well as comparing virtual autopsy to use of standard autopsy plus adjunct CT. In general, postmortem sectional imaging is becoming increasingly accepted in the field of forensic pathology.

MDCT is effective at evaluating projectile entry and exit locations, projectile path and associated tissue injury to characterize penetrating and perforating injuries. The method has limitations compared with clinical application, such as the inability to use contrast to better distinguish among soft tissues and vascular structures.
MDCT usually is performed in the supine position, which can affect projectile tracks and organ shifts. However, the technique is noninvasive and potentially can enhance investigations.\(^{24}\)

MDCT can replace radiography in helping to process and identify remains for mass casualty identification. Mobile MDCT units have been used to replace radiography and fluoroscopy; the full-body postmortem scan can be completed in about 15 minutes. Single-body or multiple-fragment bags can enter the scanner unopened if necessary. Technologists can scan the images of deceased individuals and remains at higher resolutions because there is no concern for patient exposure.\(^{21}\)

U.S. Forensic Radiography

As of 2004, the U.S. forensic system varied considerably by state, with 16 states and the District of Columbia having a centralized statewide medical examiner system, 14 using a county coroner system, 7 a county medical examiner system and 13 a mixed county medical examiner/coroner system. At that time, 8 states had hybrid systems of coroners and a state medical examiner office that performed medical-legal duties. Forensic pathologists in most large cities serve as medical examiners and pathologists.\(^{25}\)

In the ASRT Forensic Radiography Survey conducted in 2008, 88.3% of respondents reported using radiographic equipment at their facilities. Most use fixed radiographic equipment in a dedicated room and a wet processor; others have no access to fixed equipment. A majority of respondents also have access to portable equipment. Nearly 46% have digital radiography equipment on site and approximately 27% have fluoroscopic equipment at their facilities. Only 14% of respondents reported having an on-site CT scanner and nearly 70% reported having no access to CT scanners. According to a report from the National Research Council of the National Academies, about one-third of medical examiner and coroner offices do not have the radiography equipment in-house that is necessary to identify diseases, bony injuries, projectiles or identification features in decedents.\(^{25}\)

Box 2

ASRT Forensic Radiography Task Force

Nancy Adams, BSRS, R.T.(R), Chairman
Clinical coordinator for the radiography program at Itawamba Community College in Fulton, Mississippi, and x-ray section leader for the Region 4 Disaster Mortuary Operational Response Team (DMORT).

Tania Blyth, MHS, R.T.(R)(M)(CT)
Director of clinical education for the diagnostic imaging program at Quinnipiac University in Hamden, Connecticut.

Dale E Collins, MS, R.T.(R)(M)(QM), RDMS, RVT
Sonographer in Anchorage, Alaska, and faculty member of the University of Arkansas for Medical Sciences medical imaging department, serving as clinical coordinator for the university’s radiologist assistant program.

Linda K Holden, MS, R.T.(R)(QM), RDMS, FASRT
Imaging director at Western Medical Associates in Casper, Wyoming, and chairman of the ASRT Board of Directors.

Linda W Janninney, BS, R.T.(R)(T), ROCC
Radiation oncology manager at the AnMed Health Cancer Center in Anderson, South Carolina.

Stephanie Johnston, MSRS, R.T.(R)(M)(BS)
Director of the Breast Center of Texoma in Wichita Falls, Texas.

Thomas R King, BSRS, R.T.(R)
Imaging projects coordinator for Salem Hospital in Salem, Oregon, and member of the Region 10 DMORT.

Diane Mayo, R.T.(R)(CT)
Quality assurance coordinator in diagnostic imaging at St. Dominic Hospital in Jackson, Mississippi, and president of the ASRT Board of Directors.

Connie L Mitchell, MA, R.T.(R)(CT)
Assistant professor and radiography program director at the University of Nebraska Medical Center in Omaha, past president and chairman of ASRT, and member of the Mass Fatality Committee of the Omaha Metropolitan Medical Response System.

James B Temme, MPA, R.T.(R)(QM), FASRT
Associate director of radiation science technology education at the University of Nebraska Medical Center in Omaha and president-elect of the ASRT Board of Directors.
Staffing and Personnel Qualifications

Among duties of forensic pathologists is employing and often interpreting radiographs. When asked “who performs imaging at your facility” in the ASRT Forensic Radiography Survey, 44.1% of respondents reported that a forensic lab assistant performs this task. Approximately 34% stated that a registered radiographer conducts their imaging examinations.

Postmortem examinations are conducted on deceased patients, which eliminates concerns for patient safety. Still, positioning, imaging protocols and techniques must be considered for all forensic radiography examinations. Training and experience in these matters help ensure that examinations are of a quality high enough to allow examinations’ admission as solid and convincing evidence.

Personnel safety also is a consideration. Personnel should be protected when necessary and their exposure should be monitored through badges and dosimetry reporting. The person conducting an examination must know basic information, such as where a primary x-ray beam travels when positioning a C-arm so that the bulk of radiation is absorbed by a primary barrier. The ASRT Forensic Radiography Survey revealed that nearly 36% of respondents produce radiographs in a room that is not dedicated to radiography and structurally shielded with lead walls or equivalent shielding. In addition, nearly 15% of respondents reported that they do not have a radiation safety program that includes personnel monitoring via badges and regular reports; 10% of respondents said they do not have radiography protection devices, such as lead aprons, available.

It is likely that CT and MR imaging will be used increasingly in the forensic setting. These imaging modalities are complex in nature and specific curricula and specialty certifications are available in the radiologic science field to accommodate training in the principles, physics and instrumentation involved in use of these advanced imaging technologies. Each also requires particular safety considerations. The equipment is sophisticated; a mobile CT scanner involves interaction of electrical, mechanical and ionizing radiation systems. CT scanning at the site of a disaster can greatly improve victim identification but those conducting the examinations must understand issues such as x-ray tube cooling and slice thickness. For their own safety, they also must understand the principles of radiation protection. National and international accrediting organizations support the certification of all personnel who operate CT equipment.

MR scanners present safety issues to patients and personnel, and their use requires extensive attention to site design and access control. If non-MR personnel enter restricted areas with ferromagnetic objects or equipment, the high-strength magnet housed in the scanner can violently pull objects into the equipment’s bore, causing injury to personnel and major equipment damage. Accidents can occur even when the magnet is not in use.

The ASRT continues to emphasize the importance of establishing minimum standards by the federal government for personnel who perform medical imaging exams and deliver radiation therapy treatments through support of the Consistency, Accuracy, Responsibility and Excellence in Medical Imaging and Radiation Therapy (CARE) bill.

Personnel Training and Education

The United States lags behind many other nations in forensic radiography education. Preliminary data from the Bureau of Justice Statistics’ crime laboratory census reported that the training and continuing education budgets of the United States’ 50 largest laboratories were less than one-half of 1% of their total budgets. According to the National Institute of Justice (NIJ), a shortage of qualified personnel, as well as funds to educate personnel, is one of the largest challenges facing the forensic community regarding death scene investigations.

For the majority of personnel performing forensic radiography exams in medical examiner offices, there is no formal education program for radiography. With the exception of facilities that cooperate with affiliated radiology departments that employ registered technologists, many medical examiner and coroner offices use forensic or morgue assistants to conduct their radiographic examinations. These staff members usually are trained on the job for laboratory and radiography duties and the training varies from one location to another.

There is little formal forensic radiography education in the United States for radiologic technologists. There is some course work, such as courses offered at Quinnipiac University in Hamden, Connecticut. Quinnipiac courses include scope of forensics, preservation of evidence, identification and presence of trauma or child abuse. Currently, students can earn up to 7 credits in forensics as part of their work toward a bachelor’s degree in radiologic sciences (Tania Blyth, MHS, R.T.(R)(M)(CT), clinical coordinator for diagnostic imaging, Quinnipiac University, oral communication, Oct. 23, 2009).
The National Academies report on strengthening forensic science stated that the “shortage of resources and the lack of consistent educational and training requirements prevent investigators from taking full advantage of tools, such as CT scans and digital x-rays, that the health care system and other scientific disciplines offer.” The NIJ states that “maintaining and increasing professionalism within the forensic science community is critical to the delivery of quality services.”

Global Perspective

The United States lags behind Europe, Australia and Japan in forensic radiography. Other countries have more education and use more advanced forensic technology. There are only 2 departments or institutes specific to forensic radiology for physicians in the United States compared with 100 to 150 such institutes in Europe.

The International Association of Forensic Radiographers (IAFR) was formed in the United Kingdom in 1998 to “promote best practice in forensic radiography through education, training, research, communication and coordination of forensic radiography both in the United Kingdom and internationally.” The IAFR is recognized as a global leader in promoting and developing forensic radiography. Most IAFR members have clinical backgrounds and some have been involved in imaging at national and international incidents. The IAFR has established a systematic process to ensure that a response team is available to provide forensic radiography services in large-scale disasters without draining local resources.

Nearly all forensic radiography of live patients in the United Kingdom occurs in National Health Service (NHS) hospitals. Much of the postmortem radiography occurs in mortuaries attached to NHS hospitals, so it also largely is performed by registered radiographers (Mark Viner, MSc, FCR, Fellow of Cranfield University Forensic Institute and senior manager at Barts and The London Hospitals, London, England, written communication, December 2009).

In 2008, the Society and College of Radiographers (SCoR) and IAFR produced the Guidance for Radiographers Providing Forensic Radiography Services as an in-depth outline for all U.K. radiographers and radiographic facilities to follow regarding forensic examinations. To ensure continuity, the SCoR and IAFR guidelines provide standard definitions and specify involved modalities, including digital and analog radiography, dental radiography, fluoroscopy, CT, MR, ultrasound and nuclear medicine. SCoR and IAFR guidelines also emphasize the need for prompt imaging services and provide recommendations on location of postmortem examinations.

Only “specially qualified persons” can perform an examination on a body. The SCoR and IAFR guidelines name medical imaging professionals with forensic training as “the most appropriate professionals to undertake forensic radiography examinations.” All radiographers interested in working on forensic cases must maintain clinical competence and be a member of an organization such as SCoR or IAFR.

Conclusion

With the advent of virtual autopsy and increasing reliance on radiography in forensics, it is clear that more evidence, collaboration and education are needed. The time has come to increase awareness of forensic radiography as a formal tool in the forensic investigator’s arsenal. With this in mind, the ASRT suggests the following:

- Begin efforts to improve awareness of the use, scope and value of forensic radiography within the radiologic and forensic science fields.
- Improve collaboration among the diagnostic medical imaging and forensic pathology communities.
- Address the education of personnel performing forensic radiography.

The ASRT white paper on forensic radiography is a good first step toward improving awareness and collaboration. The ASRT also has prepared an educational framework that provides gap analyses for those involved in forensic radiography and to guide educators who prepare personnel in forensic and medical settings. The framework has been reviewed by a group of educators and is in draft form for public comment. To begin addressing continuing education needs, a Directed Reading on forensic radiography was published in the March/April issue of Radiologic Technology.

Other suggestions may take time to implement because of the complex system under which our medical and legal systems interface. Ultimately, the goal is to raise the level of quality of forensic radiography in the United States. More than 100 years after Judge Lefevre entered x-rays into evidence, questions remain as to how experts and jurors interpret what the images may demonstrate, but the information radiologic technology can produce in the hands of a skilled operator is no less critical or dramatic.
References

PACS: Past, Present and Future

As Dundas stated, the picture archiving and communication system (PACS) continues to evolve as a new and exciting frontier in radiology with its ability to store a digital image and allow access to previous images for comparison.1 From small rural settings to large urban areas, PACS is a common term. According to Ranahan, the effectiveness of a PACS system depends primarily on who plans and uses the system.2 Although the transition to this new digital environment is quite complex, a literature search indicates that facilities value their PACS and believe the conversion is worth the time, effort, expense and learning curve.

This article reviews the important contributions, challenges and benefits of PACS and provides historical and practical information for radiologic technologists who work with PACS on the job or anticipate PACS purchases or installations.

Literature Review

An electronic search was conducted using the PubMed and Cumulative Index to Nursing and Allied Health Literature databases. The inclusion criteria were articles that focused on PACS and were published in the past 5 years. Articles that were nonspecific were excluded. There are many and varied aspects to PACS; this literature review focused on the most recent literature on common current topics to produce the most current information rather than a complete history. Key search terms included “PACS and future,” “PACS and hospitals,” “cost and PACS and installation,” “software and PACS conversion,” “PACS issues,” “DICOM and PACS,” “PACS installation” and “PACS and digital dashboard.” This search generated more than 100 articles. Seventy-four articles were discarded based on the exclusion criteria, which left 24 articles for the literature review.

Historical Perspective

Early PACS software was developed before the Microsoft Windows (Microsoft Corporation, Redmond, Washington) era when UNIX software (The Open Group, San Francisco, California) was employed. Although early PACS images were digital, they moved over a low bandwidth, and it often took minutes of searching through the UNIX databases to retrieve 1 patient’s images.3 When Windows entered the picture, users discovered increased detail and resolution, along with the ability to magnify images. Although Windows technology was welcomed, it also meant any upgrade to the PACS could not accommodate existing images.4 Therefore, development of advanced features to further enhance the radiologist’s use of the system had to be compatible with older technology.

According to Mates et al, as new technology emerged, radiologists’ methods of reading images needed to be addressed. Traditionally, radiologists viewed 4 images across and over another 4 across. Radiologists soon determined that with the new monitor capabilities, they could not justify the expense of 8 separate imaging stations.5 Soon, 4 monitors were the norm and eventually 2. This not only led to increased efficiency, it decreased department overhead expenses.5 This was important, because initial PACS investments were costly, ranging from $930 000 to $4 million dollars, depending on facility size.5

Advantages and Disadvantages

Advantages

Top advantages identified for PACS, compared with hard-copy film, are an increase in image quality and the ability to manipulate digital images.6,7,8 PACS also helps to alleviate the issue of transporting a set of films throughout the facility.
Before PACS, the typical radiology department or imaging center was filled with view boxes, film, file rooms, darkrooms and reading rooms. These facilities often had view boxes in the hallways to make room for more exam rooms or equipment in the reading areas. PACS has generated space and cost savings while increasing revenue and readability. The installation of a modern PACS has helped decrease patient turnaround time and led to improved patient care by generating exam reports faster.¹

Dundas believed that converting to a PACS confers many benefits,¹ considering that analog film is outdated and facilities using film-screen radiography are increasingly rare. Because manufacturers have lowered the cost of these systems, installations have increased even in rural areas. Statler found at Mercy Medical Center in Des Moines, Iowa, that the benefits of PACS integration were the ability to immediately attain images and eliminate film storage.⁷

While evaluating film-screen radiographs vs PACS for readability, Roos et al found that the technical factors of a film-screen radiograph did not contribute to errors in radiologist interpretation.⁸ Regarding diagnostic time, Dundas and Weiss stated that the hard-copy method of image interpretation was comparable to interpretation with PACS, depending on the radiologists’ experience with both film and PACS.¹⁴ Radiologists’ ability to manipulate PACS images can aid in interpretation.⁶

Disadvantages

Although PACS is evolving into a more user-friendly system, the challenges are becoming more evident. While possessing many benefits, PACS has some questionable attributes. Paskins and Rai discovered that digital dictation and teaching files added to storage needs, which could compound PACS issues. They reported that compared with hard-copy images, which generally were readily available, the main disadvantages of PACS were the digital image file access speed and the system’s susceptibility to crashing.

Challenges to clinicians who work with PACS include time management, communication skills and image interpretation. When a physician is hurrying to the emergency department, words heard from another physician may slip his or her mind and the images just read may be mixed up with a similar case from the day. According to Mates et al, this scenario is not unheard of in busy departments.⁹ Other communication issues have included faxing reports and reassurance that the report has been received and read.

Prepurchase Considerations

Cost

A common rule with PACS is to set aside approximately 15% of total radiology department revenue per year for upgrades and maintenance and to maintain an adequate service contract with PACS manufacturers.⁹ To justify spending for PACS, many purchasers demonstrate how these costs may be offset. Statler identified a savings of $100 000 annually from eliminating film processing and storage.⁷ In 2003, Advocate Christ Medical Center in Oak Brook, Illinois, invested $4 million dollars in a PACS and spent $330 000 to maintain the system. Before the PACS, Advocate employed 30 librarians to catalog images, but reduced that number to 6 after the PACS was installed.⁷ According to Roos et al, the need for fewer employees attributed to the decrease of $490 000 in labor costs for 2003.³

Installation

Before installing a PACS, radiology departments should carefully assess existing physical space and capital infrastructure. If a facility requires new construction to house the PACS, optimal space for future upgrades must be considered and incorporated into the plan. The cost to change cabling and modify computer rooms dramatically increases the cost of PACS installation for some facilities.¹⁰ It can be easier to construct new, dedicated PACS reading rooms and computer rooms rather than to modify existing rooms. Many hospital employees believe that when a PACS is installed, the reading rooms, file rooms and other storage areas disappear. In fact, these areas remain but require less space because of their decreased use.

Electrical systems often require upgrading from 110 volts to 220 volts to power PACS servers and data rooms; in some instances, an isolation transformer is required. The additional electrical systems required to power PACS and servers increase the temperature of a PACS equipment room. Installing a dedicated air conditioning system can counter the heat produced by the PACS personal computer (PC). The PC can emit 600 watts, which is comparable to the heat discharged by a hair dryer. Keeping the room at a moderate temperature with low humidity helps ensure optimum performance and minimizes premature equipment failure. In addition, a nonsparking port should be installed in a surgical suite to prevent the risk of fire from flammable gases.

Facilities now use specific lighting controls, including a dimmer, at viewing workstations. These controls allow for partial or complete darkness to enhance

Prepurchase Considerations

Cost

A common rule with PACS is to set aside approximately 15% of total radiology department revenue per year for upgrades and maintenance and to maintain an adequate service contract with PACS manufacturers.⁹ To justify spending for PACS, many purchasers demonstrate how these costs may be offset. Statler identified a savings of $100 000 annually from eliminating film processing and storage.⁷ In 2003, Advocate Christ Medical Center in Oak Brook, Illinois, invested $4 million dollars in a PACS and spent $330 000 to maintain the system. Before the PACS, Advocate employed 30 librarians to catalog images, but reduced that number to 6 after the PACS was installed.⁷ According to Roos et al, the need for fewer employees attributed to the decrease of $490 000 in labor costs for 2003.³

Installation

Before installing a PACS, radiology departments should carefully assess existing physical space and capital infrastructure. If a facility requires new construction to house the PACS, optimal space for future upgrades must be considered and incorporated into the plan. The cost to change cabling and modify computer rooms dramatically increases the cost of PACS installation for some facilities.¹⁰ It can be easier to construct new, dedicated PACS reading rooms and computer rooms rather than to modify existing rooms. Many hospital employees believe that when a PACS is installed, the reading rooms, file rooms and other storage areas disappear. In fact, these areas remain but require less space because of their decreased use.

Electrical systems often require upgrading from 110 volts to 220 volts to power PACS servers and data rooms; in some instances, an isolation transformer is required. The additional electrical systems required to power PACS and servers increase the temperature of a PACS equipment room. Installing a dedicated air conditioning system can counter the heat produced by the PACS personal computer (PC). The PC can emit 600 watts, which is comparable to the heat discharged by a hair dryer. Keeping the room at a moderate temperature with low humidity helps ensure optimum performance and minimizes premature equipment failure. In addition, a nonsparking port should be installed in a surgical suite to prevent the risk of fire from flammable gases.

Facilities now use specific lighting controls, including a dimmer, at viewing workstations. These controls allow for partial or complete darkness to enhance

Prepurchase Considerations

Cost

A common rule with PACS is to set aside approximately 15% of total radiology department revenue per year for upgrades and maintenance and to maintain an adequate service contract with PACS manufacturers.⁹ To justify spending for PACS, many purchasers demonstrate how these costs may be offset. Statler identified a savings of $100 000 annually from eliminating film processing and storage.⁷ In 2003, Advocate Christ Medical Center in Oak Brook, Illinois, invested $4 million dollars in a PACS and spent $330 000 to maintain the system. Before the PACS, Advocate employed 30 librarians to catalog images, but reduced that number to 6 after the PACS was installed.⁷ According to Roos et al, the need for fewer employees attributed to the decrease of $490 000 in labor costs for 2003.³

Installation

Before installing a PACS, radiology departments should carefully assess existing physical space and capital infrastructure. If a facility requires new construction to house the PACS, optimal space for future upgrades must be considered and incorporated into the plan. The cost to change cabling and modify computer rooms dramatically increases the cost of PACS installation for some facilities.¹⁰ It can be easier to construct new, dedicated PACS reading rooms and computer rooms rather than to modify existing rooms. Many hospital employees believe that when a PACS is installed, the reading rooms, file rooms and other storage areas disappear. In fact, these areas remain but require less space because of their decreased use.

Electrical systems often require upgrading from 110 volts to 220 volts to power PACS servers and data rooms; in some instances, an isolation transformer is required. The additional electrical systems required to power PACS and servers increase the temperature of a PACS equipment room. Installing a dedicated air conditioning system can counter the heat produced by the PACS personal computer (PC). The PC can emit 600 watts, which is comparable to the heat discharged by a hair dryer. Keeping the room at a moderate temperature with low humidity helps ensure optimum performance and minimizes premature equipment failure. In addition, a nonsparking port should be installed in a surgical suite to prevent the risk of fire from flammable gases.

Facilities now use specific lighting controls, including a dimmer, at viewing workstations. These controls allow for partial or complete darkness to enhance
readability on PACS monitors or full light for cleaning staff. Radiologists need telephone lines at reading workstations and data ports are necessary at computer terminals in hospital hallways. The workstations and ports allow access to the PACS through wired and wireless devices, such as smart phones. Proper advance planning can minimize these costs and reflect a well-conceived installation or upgrade to PACS.

Staff at facilities installing a PACS also must consider the data connection to the server because transferring digital image information requires a large bandwidth. The cabling needs to increase to accommodate a newer PACS setup and diagnostic imaging studies with multiple images. Typically, category 6 cabling has been installed to transfer images and information at a faster rate. Computers with CD burners allow patients to take their images with them. Facilities also should consider the need to import CDs that patients may supply.

Successful Implementation

Lepanto et al found that a PACS was beneficial only when the dictations per radiologist increased or remained constant, which kept revenue level. In one study, a report turnaround time before PACS installation of 3.7 days was reduced to 2.6 days immediately after PACS installation and dropped to 1.5 days at 1 year after installation. A combination of appropriate training, a smooth conversion and ongoing PACS management is necessary to ensure efficiency and success.

Training

The success of a PACS depends on the training its users receive. Proper training ensures a smooth conversion and makes future upgrades and technological advancements easier to implement. Radiology departments are more efficient and more thorough with PACS after the initial training phase, according to the literature. Therefore, training should be continuous for PACS users.

Dundas suggested that the PACS installation process should involve training all appropriate hospital staff, not only radiology department staff. When the Baltimore Veterans Administration Medical Center in Maryland installed a PACS, the steps required from the initial radiology order to the final report were reduced from 59 to 9 because of the PACS.

Paskins and Rai surveyed 4 hospitals regarding a group of rheumatology physicians who were not yet using PACS. A 5-point Likert scale showed common results among the hospitals. Out of 100 respondents, 50% stated that they had not been trained on PACS. Sixty percent of those respondents stated that they had not been offered training. In addition, 85% often were unable to retrieve data, 75% believed that PACS was responsible for clinical delays and 70% found that patients had to be brought back to the radiology department because their images were inaccessible on PACS. The top 2 disadvantages of PACS were poor reliability and image access. Mates stated that these issues would have been less severe if the referring physicians had been properly trained. Weiss found that the most important people to receive training on PACS were the end users. The usability of the system was found to be only as effective as those trained.

Conversion to PACS

Once the staff and leadership of a facility decide to implement PACS, a PACS administrator, or appropriate designee, is responsible for planning the installation. During the transition, workflow must be redirected to ensure images are available at all times. The PACS administrator should work with radiologists and managers to create and implement a contingency plan in the event an image is lost. It is imperative to back up all historical images and data before going live with PACS.

A PACS installation can take several months to complete. Department personnel should be aware that many departments may be affected by this transition. Once images are acquired primarily through digital radiography or other digital modalities, they are sent to a database management system, or servers. This system stores and archives the images, which then can be sent to workstations or burned on CD-ROMs. A local area network (LAN) connects stations throughout a hospital or through high-speed phone lines to remote sites.

Because everyone involved at the Baltimore VA Medical Center conversion had their own schedules, Roos et al found that the best approach was to assign a separate project manager with the sole responsibility of installing and coordinating the system. The project manager coordinated the installation with input from representatives of all disciplines. A cardiologist, orthopedic surgeon, neurologist and hospital administrator also were involved. Dundas and Amor found that hiring external consultants helped ensure a smooth process. External consultants handled the planning and business details and addressed the hardware needs.

One study compared 100 radiology patients in a PACS setting vs a non-PACS setting. According to Zacharia et al, the PACS turnaround time and the time...
from image capture to image interpretation status were significantly less for the PACS facility.11 The authors found that the PACS facility had a turnaround time of 3 hours and 40 minutes compared with a non-PACS facility time of 25 hours and 19 minutes.11

PACS Responsibility

Each PACS installation is customized and requires that a number of people participate to optimize the installation process and minimize errors. Although a hospital’s information technology (IT) department generally is responsible for the PACS, departments such as clinical (biomedical) engineering also may oversee aspects of the system.1,15 Errors can occur between local and remote servers if IT and clinical engineering departments do not coordinate their efforts effectively. Amor found that communication gaps decreased when responsibility was combined.15

PACS Today

As PACS becomes more common in practice, its influence spreads. For example, mammography traditionally required a designated hard-copy workstation even after some PACS installations. This practice is changing, largely because of increased use of digital mammography and higher-resolution monitors.6

In studies such as the one by Zacharia et al, which involved 100 patients, increased film retrieval rates and efficient image interpretation were only a few of the reported benefits of PACS.12 Technology upgrades, such as the digital dashboard, digital imaging and communications in medicine (DICOM) and radiology information systems (RIS) have helped PACS users become more efficient.2,9,16 The proven challenges and benefits of the technology are summarized below.

Radiologist Workstations

The modern setup for radiologist workstations comprises 2 side-by-side monitors at about a 30° angle to each other. Mates et al observed that monitors normally are positioned vertically, although some radiologists prefer a horizontal orientation.3 If the radiologists’ eyes move away from the image in the middle of a read, their eyes must readjust to another light source. This can lead to errors in interpretation when the radiologist returns to the initial image. Thus, the fewer times a radiologist looks away from the screen, the fewer mistakes are made in diagnosis.5 PACS manufacturers have resolved this problem by streamlining the user interface. By reducing the drop-down menus, which are common in a Windows environment, they decreased the readers’ need to readjust their eyes. Noumeir found that these changes increased efficiency and accuracy.12 Some radiologists also prefer a lower-resolution monitor next to the 2 high-resolution monitors for reading text and other tasks.5

Software

Manufacturers and users continue to work on developing systems with nonproprietary software. Software that was not specific to a manufacturer benefited Mercy Medical Center. The facility wanted to ensure that the chosen PACS would be compatible with existing or future software and computer systems. Statler suggested that using matched software with a common language allows images to be viewed anywhere in the world.7 The same images also can be distributed and viewed on several monitors in digital format. For example, because Mercy is in an urban setting, its outlying clinics could transfer images to be evaluated via teleradiology. A wireless PACS also was installed in the hospital. Health Insurance Portability and Accountability Act (HIPAA) regulations and Joint Commission compliancy were not concerns because only authorized users can access images and all users are monitored.7

Web-based Applications

Web-based applications support remote image viewing by allowing radiologists to access information and images on a computer from a remote location to answer questions or review a case (vs make a final interpretation). Mates et al upgraded their hospital information system and integrated a PACS, which solved communication and reporting problems. The application allowed staff to open the patient’s chart, files and images to assist with diagnosis. The data remained tied to the patient’s unique identifier in the electronic record with text boxes that could be filled in with the appropriate information during dictation.9

The Windows-based application operates on the existing Web-based PACS. A Web-based viewing program provides resolution approximately one-third that of in-house PACS monitors. Although a Web-based system is one-tenth the cost of PACS, it has significantly decreased results. A positive aspect of this system is that any of the imaging stations, either in-house or at a remote site, can display remote files and folders. Although many users may manipulate PACS images throughout the hospital, a dedicated server handles the workload. Because the workflow does not slow the
system, it seamlessly communicates through the dedicated server. In addition, Paskins and Rai believed that the processing power of a PACS can be maintained by using a read-only computer incapable of performing complex tasks.

Database Searches

Morgan and Chang described a comprehensive database research tool that helps improve turnaround time for PACS searches by using keywords. The method involves researching information, such as a particular tumor and images, that is relevant to a keyword that appears on the screen. The authors compiled different patient lists in PACS and those who were seen on an outpatient visit would not come up in the general list that contained only inpatients. The 2 lists and searches then were combined for a better match. Classifying and describing the cases during dictation led to more accurate search results.

DICOM

DICOM is the standard for distributing and viewing medical images used by most imaging equipment manufacturers. The primary difference between a DICOM image and any other image format is that DICOM images contain patient-specific information and other pertinent information referred to as a header. This technology helps with dictation, transcription and the ability to verify information. The National Electrical Manufacturers Association (NEMA) created DICOM to improve the compatibility and workflow efficiency of imaging and information systems. To view the images, a common PC must contain a dedicated DICOM browser. These browsers are expensive; however, free alternative browsers are available online for small clinics and physician offices. Generally, these DICOM browsers are classified for viewing, teaching and serving as mini-PACS servers. Each browser must be chosen for a specific purpose to avoid errors.

Marcus et al stated that the DICOM standard has image file formats, data transport, printing and querying specifications. Most PACS systems are entirely DICOM based. PACS uses Health Level 7 (HL7) to generate images. The HL7 and DICOM integrate for faster and more precise communication.

After the technologist completes the examination, there is an option to annotate or make changes post-processing that go into the patient’s folder before the radiologist interprets the images. These features may include digital annotation of thumbnail images and insertion of digital voice recordings. In addition, a link to a Web site or conference information can be included in a patient’s PACS file. This further enhances a radiologist’s ability to pass along useful information to a colleague who interprets studies of the same patient in the future. To save time, radiologists can select predetermined statements from a drop down-menu of common annotations and notations. The name and credentials of any physician who modifies the exam are electronically stamped on the image, which ensures consistent reading and evaluation of images. Mates et al observed that this feature also aids in education.

The DICOM eye is a specific software format that converts images from other file formats (e.g., JPEG or BMP) into DICOM format. It also supports converting video to images so that DICOM-compliant equipment can send images or information through Internet and intranet servers. To maintain efficiency, the system keeps the images in a digital format. Integrating PACS and a DICOM standard when entering information into a patient’s electronic record ensures that the order number and patient name are copied electronically to all images, which reduces the possibility of mislabeling images.

Digital Dashboard

Faster scanners and more detailed images have made the PACS efficient but more complex because radiologists are expected to read images with fewer errors in dictation. A cluttered screen can lead to errors and missed studies, but the digital dashboard is helping solve this problem.

This technology includes a control panel that brings to the radiologist's attention the status of processes running, open cases or cases that still are being dictated. For example, if a case is not closed within a specific amount of time, an alert sounds to notify the physician currently reading at that monitor. Digital technology for the dashboard allows a person to monitor many different components on 1 screen and set alarms to notify physicians when an emergency case arrives in the system. The real-time aspect of this approach optimizes radiologist efficiency and helps prevent them from overlooking critical and timely studies.

The dashboard also can monitor a radiologist’s unsigned reports and nondictated cases to help manage workflow. A dashboard aids departments in managing priority cases. This can help ensure that certain critical areas of care, such as the intensive care unit and emergency department, receive the appropriate priority from...
radiology. The key to the dashboard concept is optimum design, with some software offering customization for individual radiologists.21

Surgical Suite

When hospitals adopt PACS, the surgical suite often is one of the last departments to implement the technology. Yet surgeons can benefit from PACS through immediate access to images that show pathology and previous studies while the patient is under anesthesia. The blending of modern technology with a critical clinical department has shown the full capabilities of PACS. The St Mary’s/Duluth Clinic (SMDC) Health System in Minnesota comprises 4 hospitals and 20 clinics. SMDC decided to install a PACS in the operating suite, which generated concerns, such as the type of monitor displays and how to make the environment physician friendly.

Dallessio observed that by recruiting a member from every surgical department, the surgeons collectively decided monitor number, size and placement.20 Portability and a 40-inch monitor were necessary for the surgeons, so they integrated 2 solutions. A mobile cart with 2 monitors measuring 19 in each provided portability and a large 40-in monitor was fixed to the wall with a bracket that could move 3 ft in any direction. The large monitor offered other staff in the room the same view as the surgeon, which made the PACS monitor a teaching tool. The upgrade also helped the surgeon be more attentive to the patient instead of looking away at view boxes. A PACS system trainer was available for the first few months to ease the transition.

The SMDC Health System upkeep was relatively inexpensive. Software upgrades came with the system and SMDC secured a 24-hour service contract with a guarantee to replace any faulty monitor. The operating suite proved to be a suitable PACS environment with the right planning. Dallessio reported that having the appropriate staff on hand to identify and solve issues made the PACS environment a welcome addition to the operating suite.20

Portability

Modern PACS stations can be portable while maintaining high transmission speeds. For example, a physician can view an image on a portable device, such as a smart phone. Although these images are not diagnostic quality, they are of high enough resolution for an initial read. Weiss found that since image reading has become portable, its ease of use allows immediate consultation with other physicians or staff and the patient, when appropriate. Because time is crucial in emergencies, some personal digital assistant (PDA) companies have interfaced Web-based technology that allows access to PACS images.3

Kim et al reported that PDAs can bypass a PACS network that is down by allowing a user to take a picture of the screen at the modality workstation.22 Although this can distort the image, it may be acceptable for a first read in an emergency situation. The attending physician in the emergency department can pull an image from the workstation and screen capture the image. This image is compressed in a multiresolution format and transmitted to a remote physician, who decompresses the image on a PDA and reviews the same image as the on-site physician. The user interface for the PDA supports PACS options such as image magnification, contrast adjustment and rotation.22 Special algorithms encrypt the images to ensure HIPAA compliance.22

Confidentiality

As mentioned, adhering to HIPAA regulations is a concern when a facility implements and uses PACS. Liu et al explained that a more accurate and complete log file can be created by using separate servers for each PACS data set, from images to patient information.23 If the PACS administrator tries to enter new images, an error message appears. This also is true if a technologist at attempts to change patient accession numbers or date of birth. The technology has advanced to recognize each individual’s role in the PACS environment. If an error occurs or suspicious activity is recorded, the system alerts the user and administrator. The more sophisticated PACS detect intrusions by recognizing commands as a flowchart and make decisions without any unnecessary error messages.

Manufacturer Support

PACS manufacturers provide support forums with almost instant answers to questions. To get the most value from an application, the PACS administrator can go online and find answers. A busy forum, according to Nagy, does not necessarily mean a problem system.24 An active forum shows the manufacturer’s commitment to a successful PACS system. The best systems also have helpful documentation that is written from the user’s point of view.24

The Future of PACS

Weiss stated that although the past standard of PACS transmission was megabytes (MB) per second, the terabyte (TB) per second generation is here. Approximately
Integration with RIS

By integrating PACS and RIS, radiology departments can decrease turnaround time for patients and their exam results. If the systems do not communicate properly, the result can be down time, a problem a facility must address in advance. For example, at one facility, accession numbers and medical record numbers were not attached properly, which slowed down the radiologists’ ability to read studies and required reworking the information. The root of the problem was that the PACS and RIS communication were out of date. The hospital addressed the issue by finding a manufacturer that accommodated off-the-shelf servers and other equipment and integrated RIS and PACS.

By integrating the systems, the hospital freed money for other aspects of the process. They increased the number of reading stations from 7 to 12 and added a dedicated server that allowed remote access to the PACS for community outpatient centers. Online storage capacity also increased from 0.5 TB to 2.5 TB with the potential for 5 TB, which allowed viewing data from the entire information record, not just the preceding 4 months. The efficiency and image retrieval of the new system led to an 80% labor decrease for each exam. Ranahan determined that the upgrade reduced the process time of exams from 7 to 10 minutes to about 3 minutes. The integration increased speed and efficiency and decreased labor.

Voice Recognition

Hospital systems and manufacturers continue to test true integration of voice recognition systems. Main Line Health in Pennsylvania added Powerscribe (Nuance Corporation, Burlington, Massachusetts) to its PACS. The voice recognition system reduced typing by radiologists and increased workflow. Radiologists went through 7 weeks of training as the system recognized specific speech patterns and were allowed to opt for self-editing or using a transcriptionist. The system reduced report turnaround time to 3 hours compared with 23 hours average time before voice recognition was implemented. Costs also decreased because Main Line Health reduced the number of transcriptionists from 12 full-time positions to 5 part time. According to Schildt, Main Line Health has saved approximately $500 000 per year since adopting this technology.

Conclusion

Several factors help overcome the challenges of purchasing and implementing PACS. Managers and radiologic technologists who consider a PACS purchase should focus on several key aspects and pieces of advice offered by current PACS users. When the hospital deliberates the purchase, staff should weigh the benefits and costs. The installation process must be planned thoroughly to ensure adequate space and infrastructure for the entire system.

Training PACS users is critical to success because involving hospital-wide users decreases the learning and adoption curve. It also is important to purchase open technology that is compatible with existing PACS or open to future upgrades. Most modern computers can display PACS images, but radiologists must have a reading room with high-resolution monitors.

While solving PACS issues, radiologic technologists and other implementation staff should consider technical and workflow issues to offset a possible work force decrease. Although a rough road ahead is expected when initiating the PACS process, with proper planning and foresight the benefits from this innovative technology are more than worth the effort for most facilities.

References

8. Statler C. Leader of the PACS: join a small group of innovative facilities that employ picture archiving and communication system (PACS) technology. Nurs Manage. 2005;36(2):32.
Ensuring Quality and Safety

The recent hearing on medical radiation before the U.S. House of Representatives Energy and Commerce Committee’s Subcommittee on Health and the public meeting of the Food and Drug Administration highlighted both the importance of and the different approaches to assuring quality and safety in medical imaging and radiation therapy. The important role played by those who design, install, maintain and train users of equipment and various systems-based quality improvement and control mechanisms were noted in the discussions. Ultimately, however, the individual professionals who serve as the interface between the systems and the patient represent the most important factor in the equation. Ensuring the qualifications of these individuals upon entry to the profession and as they progress through their careers is clearly the keystone to assuring patients of quality and safety.

There are various mechanisms for ensuring the qualifications of individuals. Developing standards that define what it means to be qualified typically is driven by professional organizations and consumers of the services provided. The standards are enforced by employers, state governments, the federal government or third-party payers. These standards may be applied at either the individual level (as in certification and licensing) or at the aggregate level (as in practice and facility accreditation).

Mechanisms for Ensuring Qualifications

Certification is typically a profession-driven mechanism applied to individuals. It is voluntary because the profession does not have a way to mandate that all individuals performing a particular role meet the specified standards. Certification typically is administered at the national level, which provides standardization and consistency. Educating those in the profession to achieve buy-in regarding the importance of demonstrating personal qualifications by meeting and maintaining quality standards is the most effective tool for promoting voluntary certification. Over time the expectation develops within the profession, among employers and among consumers that individuals will be certified. Although voluntary, certification often becomes a de facto requirement for working in the profession for most practice settings. An example of this mechanism is ARRT’s certification programs.

Licensure is typically a state-driven mechanism applied to individuals. Regulating which individuals may practice a profession within a state is considered part of a state’s responsibility to protect its citizens. The introduction of regulatory mechanisms such as licensing may be driven by professionals within the state or by consumers of the service or their representatives. One challenge created when individual states develop licensure is maintaining consistency of standards across states. Interstate inconsistencies may create barriers to professionals moving from one state to another. It also may create different standards of patient care from state to state.

Accreditation typically is a profession-driven mechanism applied at the aggregate level (as in practice or facility accreditation). Practice accreditation standards typically include requirements for personnel, as well as requirements regarding several other aspects of the practice. Practice accreditation initially is voluntary because the profession does not have a way to require that all practices meet specified standards. Promoting voluntary practice accreditation as a professional responsibility, as a useful quality improvement tool and as an effective marketing tactic are all productive approaches to gaining buy-in from the profession. Examples of practice accreditation programs are those for computed tomography (CT) offered by both the American College of Radiology (ACR) and the Intersocietal Accreditation Commission (IAC).
Deemed Status of “Voluntary” Standards

In this era of economic constraints, maintaining a licensing program can present a challenge for states. One approach to minimize the associated expenses of a state licensure program is to adopt the existing standards of a national certification program, sometimes with additional state-specific requirements. This has the effect of giving the voluntary certification standards a mandatory character in that state. To the extent that a state licensure program requires certification by the national body with no additional provisions or exceptions, certification and licensure become functionally equivalent within the state. More than three-quarters of states currently have a regulatory mechanism for controlling who can perform radiographic procedures and all those states recognize certification in some fashion, although not all recognize national certification standards “as is” as the sole standards for licensure.

The federal government normally does not create national licensure programs for those professions practiced within a state. However, the federal government exercises its influence over the practice of professions within states. For example, the federal Consumer-Patient Radiation Health and Safety Act of 1981 encouraged states to adopt standards for imaging and radiation therapy. The law did not include an effective enforcement mechanism and although most states now have licensing laws for radiography (some adopted prior to 1981 and some after), several states have not enacted licensing laws. Inconsistencies exist even among states with licensing laws. For example, not all radiologic modalities are regulated by all states that have laws covering radiography. The ASRT has been leading a coalition of professional organizations to lobby for more effective federal legislation over the past decade. The CARE (Consistency, Accuracy, Responsibility and Excellence in Medical Imaging and Radiation Therapy) bill would link standards of educational preparation and credentialing for individuals performing medical imaging or radiation therapy to federal funds received by states to induce states to adopt licensure requirements more consistent with national standards. With its focus on the qualifications of individuals, CARE could be characterized as following a certification model as opposed to a practice accreditation model.

The Medicare Improvements for Patients and Providers Act of 2008 (MIPPA) adopted a practice accreditation model to address quality and safety. MIPPA is federal legislation linking Medicare payment for the technical component of CT, magnetic resonance (MR) imaging, positron emission tomography (PET) and other nuclear medicine procedures to practice accreditation. This portion of the law will take effect in 2012 and applies to procedures performed in the outpatient setting. Rather than specify standards that practices must meet to become accredited, MIPPA called for the Secretary of Health and Human Services to evaluate and recognize practice accreditation programs administered by nongovernmental organizations. The practice accreditation mechanisms of the ACR, IAC and The Joint Commission have been recognized. This, in effect, makes the voluntary practice accreditation standards mandatory for this particular set of circumstances (ie, CT, MR, PET and nuclear medicine procedures performed in outpatient settings for Medicare patients).

The Mammography Quality Standards Act (MQSA) is yet another example of a federal program that addresses imaging quality by setting and enforcing standards in a particular modality. MQSA focuses on the practice level and specifies that an FDA-issued certificate is required for lawful operation of a mammography facility. Only an FDA-approved accrediting body can issue such a certificate. The practice standards cover multiple aspects of the practice, including radiologic technologist qualifications. In contrast to the MIPPA model, in which the standards for accreditation are not specified in detail, but are left up to the recognized accreditors, MQSA spells out the standards. The enforcement mechanism includes both a carrot for compliance (ie, reimbursement) and a stick for noncompliance (ie, prosecution).

Deemed status for certification standards and practice accreditation standards also occur via a nongovernmental enforcement mechanism administered by private, third-party payers. There is an obvious interest on the part of insurers to pay only for procedures that lead to effective diagnoses and treatments, an important element of which is the quality of the procedure. Requiring that the individuals performing the procedures meet professional standards helps ensure quality. Certifying individuals or accrediting facilities as an important indicator of quality can be used as a prerequisite for reimbursement under pay-for-performance models.

Summary

The certification model addresses quality and safety by directly targeting the qualifications of individuals. The practice accreditation model takes a more global approach to quality and safety and addresses the qualifications of individuals and standards for additional components of the quality chain. Although both certification
and practice accreditation fundamentally are voluntary, the programs may become mandatory when enforcement mechanisms are linked to the programs via state or federal legislation or via private reimbursement policies, effectively resulting in mandatory standards.

The CARE bill takes a certification approach to quality and safety by focusing on the qualifications of the individual. MIPPA takes an accreditation approach by focusing on the practice. MQSA is somewhat of a hybrid in that it takes an accreditation approach, but spells out standards for the individual that the accreditor must follow. If the practice accreditation standards require that all technologists employed in the practice be certified in the modalities performed, then the practice accreditation model and the certification model become functionally equivalent in terms of personnel qualifications. To the extent that practice accreditation models are less prescriptive regarding personnel standards, the certification model results in more stringent standards.◆
Literature Review
features contributions from volunteer writers from the radiologic sciences, reviewing the latest in publications and communication materials produced for the profession. Suggestions and questions should be sent to communications@asrt.org.

A Quick Look at MR Imaging

MRI AT A GLANCE.
Wiley-Blackwell

This book was written to educate and re-educate magnetic resonance (MR) technologists and radiologists about the physics of magnetism, the structure of the atom, resonance, signal generation and echo physics. This easy-to-carry, soft-covered book is a dynamic, well-written textbook.

The content, in actuality, is outside of my frame of reference. My career was in computed tomography (CT) and angiography, but I found it easy to understand, and I was able to comprehend the outlined MR principles. This manual takes more than just a glance; it deserves the full attention of the reader. The diagrams are well done and the colorful figures are well thought out and explain the complicated physics in a concise manner.

The content flows easily from principle to principle with updated figures. There are 62 chapters or explanations, beginning with electromagnetism and continuing through signal generation and relaxation mechanisms. The T1- and T2-weighted principles have very clear images of the brain showing the difference in proton densities. There are concise instructions on the use of fast or spin echo, gradient echo and signal-to-noise ratio. The MR student or physician can pick up this book at any time for a refresher regarding this complex, invaluable technology. It pays to keep current and this manual certainly will do the job.

I was particularly interested in the chapter on contrast-enhanced MR angiography. My husband has had 2 cerebral MR exams, one with gadolinium and one without. It was interesting to find out that gadolinium is a T1 shortener that enhances the blood. This clarified the images we were shown. Even though I do not specialize in MR, I enjoyed learning about a modality that is on the forefront of today’s medicine.

Appendix 1 explains artifacts and their remedies. Appendix 2 lists acronyms and abbreviations; I had no idea that the field of MR had so many. The glossary is an alphabetical list of expressions used in MR imaging. I also was pleased to see that the author addressed issues such as claustrophobia, bioeffects, screening and safety procedures.

This is an important textbook and I would recommend that every radiology department have it available for students, technologists, physicians and laypeople. *MRI at a Glance* is an invaluable review aid.

Anna F Hess, R.T.(R)(CV), CRT
Senior Technologist
North Bay Orthopaedic Associates
Vallejo, California

FUNDAMENTALS OF MEDICAL IMAGING.
2nd ed. Suetens P. 2009. 253 pgs.
Cambridge University Press.
www.cambridge.org. $108.

At first glance, it is obvious that the intended audience for *Fundamentals of Medical Imaging* is physicists, engineers, biomedical scientists, computer scientists, medical practitioners and mathematicians. The book was not written for radiologic technologists,
although the terminology may sound familiar to technologists and radiologic science educators. However, the terms are presented in a more scientific format that explains the physical principles and applications of how technology works rather than how to manage the equipment from an operator’s point of view.

The reader of this text must have a strong background in physics, math or engineering to understand the context. Pages throughout the text present multiple mathematical formulas, as well as more than 300 colorful illustrations, graphs and charts that accompany the reading.

The author is a professor of medical imaging; chairman of the Medical Imaging Research Center in the University Hospital, Leuven, Belgium; and head of a division for image and speech processing at an electrical engineering department in Belgium. Other contributors to this book are the authors’ colleagues from the imaging research center.

This text is the second edition of a book originally published in 2002. The second edition includes an appendix of questions for each chapter with short answers, explanations, calculations and graphs on a companion Web site. The supplemental Web site also includes additional images, 3-D slide animations and other supportive resources.

The book is medium size and lightweight and the font is small, especially for the figure descriptions. The headings and subheadings are easily recognized. More importantly, the content of this book adds to the body of knowledge by explaining the scientific principles of how medical imaging works technically and mathematically.

The book is well organized. The first chapter is dedicated to defining digital imaging and discusses mathematical image operations, as well as image quality. The next 5 chapters feature special imaging, including computed tomography (CT), magnetic resonance (MR) imaging, nuclear medicine and sonography. The chapter for each modality has an introduction, theory of physics instrumentation, theory of image formation, clinical use, image quality, biologic effects and safety and future expectations section. Most of the content is dedicated to equipment design and engineering. The final 2 chapters discuss image analysis and software applications for 2-D and 3-D imaging in CT and MR. Furthermore, data acquisition and postprocessing techniques for diagnosis, therapy planning and surgical intervention are featured.

One of the book’s strongest points is the up-to-date material. The author includes the latest technical advances and software applications in radiography and special imaging. For example, in the radiography section, the author states that ultrasonography, CT and MR have replaced examinations such as arthrography, myelography, cholangiography, cholecystography and pyelography. The CT chapter features 4 dedicated CT scanners for oral and maxillofacial exams, breast CT and specially designed mobile scanners for spine and orthopedic and head and neck exams. Electron beam tomography is discussed, as is dual-source CT. The future use of a positron emission tomography (PET)/MR scanner also is mentioned.

The book does not present material concerning patient care-related issues, but the author includes a brief section concerning biologic effects and safety for each modality that includes radiation safety for CT, precautions with ferromagnetic objects in MR imaging and radioactive material precautions in nuclear medicine. The author includes a short section about future expectations for each modality at the end of each chapter. The book does not include chapters on mammography, radiation therapy or bone densitometry.

Radiologic science educators could use this book as a reference to help define terms when teaching radiologic physics to advanced-level students. This reviewer would not recommend adopting Fundamentals of Medical Imaging for radiologic science core courses.

Tammy Curtis, MSRS, R.T.(R)(CT)
Radiologic Sciences Program Faculty
Northwestern State University
Shreveport, Louisiana
Editorial Review Board Membership

In August each year, the Editorial Review Board (ERB) for Radiologic Technology appoints new members. We are beginning our search for new members to begin terms August 1. The ERB is a group of ASRT members who volunteer to serve as reviewers for the peer-reviewed manuscripts submitted to Radiologic Technology. You may be interested in becoming a member, but may have some questions about the ERB, how to become a member and the responsibilities of the ERB.

What Are the ERB Mission And Goals?

The mission of the Radiologic Technology Editorial Review Board is to promote and support scholarly inquiry and dissemination of knowledge that contributes to the body of knowledge in the radiologic sciences. To accomplish this mission, ERB members are expected to:

- Support writers in the radiologic sciences.
- Ensure quality of published articles that build and strengthen the body of knowledge in the radiologic sciences.
- Establish, evaluate and revise ERB policies and procedures.
- Acknowledge excellence in publication.
- Collaborate with ASRT staff on publication issues.
- Collaborate with the ASRT Education and Research Foundation to support scholarly activities within the radiologic science profession.

What Are the Qualifications of An ERB Member?

ERB members demonstrate publishing experience and the broadest interests of the ASRT’s membership with representation from the various radiologic science disciplines. Our goal is to have members who reflect the diverse modalities and interests of our profession. To be considered for membership on the ERB, you must be an ASRT member. Additionally, you must have experience in writing or editing professional materials. Preference is given to candidates who have published a peer-reviewed article. The chairman of the ERB selects appointees.

What Are the Responsibilities Of an ERB Member?

The primary duty of an ERB member is reviewing manuscripts submitted to the peer-reviewed section of the Journal. Members must be willing to commit the appropriate amount of time required to conduct reviews properly, typically several hours each month. When reviewing a manuscript, ERB members provide a thorough evaluation of the submitted manuscript with clear feedback and advice for the author. Reviewers are expected to be honest, constructive and courteous when providing feedback.

All ERB members are expected to take an active role in all matters related to the ERB. This includes communicating with the ERB chairman and other members, participating in meetings and conferences and reviewing manuscripts according to established policies and time frames. The expertise of the ERB members is very important; therefore, members should remain competent in their area of expertise.

The review process requires confidentiality from all ERB members. Additionally, to maintain the integrity of the review process, members must disclose any conflicts of interest or potential bias. In addition to manuscript review, ERB members should review each issue of the Journal and call any problems to the editor’s attention. Also, ERB members should assist in recruiting new members to the ERB.

How Long Is the ERB Term?

A 1-year training period is completed at the beginning of an ERB member’s
first term. After acceptable completion of training, members serve 2 additional years on the ERB. At the end of the first term, members are eligible to serve a second 3-year term.

How Do I Become an ERB Member?

If you are interested in being considered for ERB membership, please submit a current curriculum vitae and a letter of interest addressing your qualifications, areas of expertise in the radiologic sciences and the strengths and abilities that you can bring to the ERB to me at carwilel@nsula.edu. Please contact me at carwilel@nsula.edu if you have any questions.
A number of years ago, when I was approached for my current teaching position, I had no idea what I was getting into. I remember thinking, “Physics… you would like me to teach physics?” Then I thought that if I had passed the course, why not teach it? That was just the beginning. Equipment operation and maintenance, image production and evaluation and other basic subjects may not be those courses that radiologic science students clamor for, but a few years and 5000 Microsoft PowerPoint slides later I am not sorry that I took on such a challenge. As educators, what we teach has to be something we truly enjoy.

Creating a More Interesting Lesson

I enjoy teaching, but realized early in my career that there were some classes I did not look forward to. Some lessons were more difficult to grasp than others and I found myself describing the material to my students as “rather dry.” How could I expect students to look forward to class and understand the material if I did not enjoy teaching it? Then I decided to do something about it. I now use several approaches for creating a more interesting classroom.

Familiarity

A familiar object can help explain a concept. For instance, a hair dryer needs rectification to have variable heat. Although the use and scope of radiography equipment differs from the hair dryer, this exercise helps demonstrate the rectification concept. A student pointed out that rectifier and hair dryer rhyme, which serves as a memory device. Using words in this manner can make it easier to remember certain terms. Our motto at New Hampshire Technical Institute is “We are all teachers. We are all learners.” Indeed, I learn a great deal from my students.

Devices such as a coffee pot, refrigerator or toaster oven can demonstrate the resistance concept. I often receive a puzzled look when explaining that a resistor is a device that impedes the flow of electricity. Then when I explain the concept in terms of an object that students use every day, it does not seem so abstract.

If instructors can make some of the concepts we are teaching a little more familiar, the students should be able to grasp and retain them more easily. For example, the question “If Derek Jeter ran 30 m in 15 seconds, what would his velocity be?” helps students to understand the concepts, and at the same time makes the lesson more interesting.

Creativity

One theory instructors often discuss in exposure class is that a radiologic technologist cannot overcompensate with peak kilovoltage (kVp) to make up for insufficient milliampere-seconds (mAs). If the technologist does not use enough mAs, the image will have a mottled-looking appearance. Creating analogies to help explain theories that students often find difficult to grasp is a proven method for retention and also improves attention to the lesson at hand.

To illustrate the theory behind quantum mottle, I use this example: A girl has just baked a cake and needs to ice it, but the icing won’t cover the cake. Her mother walks in and tells her that the spatula she is using is just not big enough. So the girl uses a larger spatula, which still doesn’t work, and then a larger spatula. The size of the spatula does not make any difference. If there is not enough icing, you simply will not be able to cover the cake. This is exactly the theory behind quantum mottle. If a technologist does not use enough mAs, he or she is spreading the x-ray photons too thin. The icing represents the mAs and the spatulas represent the kVp. It does not make any difference how high the kVp is because if the technologist does not begin with enough mAs, the radiograph will exhibit an uneven density and be an inferior image.
I present this lesson complete with cupcakes and spatulas of varying sizes, relating the spatulas to corresponding 50 kVp, 70 kVp, 80 kVp or even 120 kVp settings. The exercise helps the students grasp the concept.

Class Participation
I bring gadgets into the classroom that I think will help students to understand a concept. When teaching electricity principles in equipment maintenance and operation class (lovingly referred to as physics), I bring in balloons or hair combs to electrify and pick up pieces of paper to illustrate static electricity. When discussing magnetic properties, I bring elementary magnetic games to the classroom to illustrate the basic concepts of magnetism. I have constructed makeshift armatures to demonstrate the difference between a generator and a motor. These seemingly simple examples actually help the students and are the lessons that they remember.

When teaching pathology, I turned the entire lecture on the gastrointestinal series into a script with parts for each student. The response was overwhelming. The students enjoyed participating, and they learned from the exercise.

Games are a great way to review material before a test, whether playing bingo (of course in radiography, we play “x-ray”), “Jeopardy” or a game of the instructor’s creation. The options are limited only by the instructor’s imagination. I have even sent my students on a scavenger hunt to look for various tools and devices.

Visuals
I have used vegetables and sliced them in different ways to show the difference between conventional tomography and computed tomography (CT). For example, I slice a cucumber lengthwise from top to bottom to demonstrate conventional tomography. I then slice another horizontally to demonstrate cross-sectional anatomy.

When I teach contrast, I dress completely in black and white. I walk into the classroom and before beginning the lecture, I ask the students, “When I was dressing this morning, was I thinking high contrast or low contrast?” I then don a gray tweed jacket and again pose a question to the class. “If I get cold and decide to put on this jacket, am I thinking high contrast or low contrast?” Their answer is undoubtedly low contrast.

Humor
Whether it is a funny experience I had as a radiologic technologist or a picture I sneak into my slide shows, such as a witch flying in on a broom during October, I try to take every opportunity to add a little humor. It breaks up and even wakes up the class. Inserting funny answers into exams can relieve the stress and anxiety of test taking. For example, I use my name as a possible multiple choice option for the person responsible for the discovery of x-rays.

Application to the Clinical Setting
We want our students to apply what they learn in the classroom to the clinical setting. Our labs are the perfect place to practice this. I usually coordinate what we have learned in the classroom in a particular week to execute in my weekly lab. Whether we are illustrating the effects of quantum mottle, applying the 15% rule while performing radiography, or showing the difference in the strength of the beam by performing the anode heel effect, we make these lessons virtually real. I cannot count the number of times I hear a student say, “Now I get it!”

By taking time to use creative tools in the classroom and then helping students apply the lessons taught in clinical labs, instructors help students discover how complex radiologic science concepts will work when the students eventually stand behind the operator console.

Conclusion
By using these teaching techniques, I also have found that I enjoy my job more. I feel that my efforts at creativity are paying off and I keep this phrase in mind: If your lessons are drab, then your class will be drab. If your lessons are fun, then your class will be fun. If your classes are memorable, then your lessons will be memorable. Isn’t this exactly what we are striving for? ♦
Faculty Position, Radiologic Sciences Department
University of South Alabama

The University of South Alabama, Department of Radiologic Sciences, invites applications for a full-time twelve-month non-tenure track faculty position, available January 3, 2011. Didactic and clinical instruction required. Qualifications include ARRT certification in radiography, Masters Degree (Doctoral Degree preferred), previous teaching experience, three years clinical experience. Multi-disciplinary ARRT certification preferred. Deadline for applications is September 3, 2010, or until the position is filled.

Applicants should submit their curriculum vitae to:
Dr. Charles Nowell, Chair, Department of Radiologic Sciences, 307 N. University Blvd, HAHN 3015, Mobile, Al 36688-0002. The University of South Alabama is an Equal Opportunity/Equal Access Employer.

For Your Profession

By supporting the ASRT-PAC®, you help send a strong message that more than 134,000 ASRT members are an involved and active group who merit candidates' attention on health care issues affecting medical imaging technologists and radiation therapists.

Support your career.
Support your future.

Support the ASRT-PAC®.

Go to www.asrt.org/pac to contribute today.

©2008 American Society of Radiologic Technologists. All rights reserved.
Get Your Credits Fast and Easy

<table>
<thead>
<tr>
<th>Course</th>
<th>CEU</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trauma & Mobile Radiography</td>
<td>10.0 CEU</td>
<td>$65.00</td>
</tr>
<tr>
<td>Digital Mammography</td>
<td>5.0 CEU</td>
<td>$80.00</td>
</tr>
<tr>
<td>Direct Diagnosis: Breast Imaging</td>
<td>7.0 CEU</td>
<td>$80.00</td>
</tr>
<tr>
<td>Radiographic Pathology</td>
<td>13.0 CEU</td>
<td>$80.00</td>
</tr>
<tr>
<td>Essentials of Anatomy & Physiology</td>
<td>32.0 CEU</td>
<td>$105.00</td>
</tr>
<tr>
<td>Anatomy Coloring Book</td>
<td>22.0 CEU</td>
<td>$92.50</td>
</tr>
<tr>
<td>Physiology Coloring Book</td>
<td>21.0 CEU</td>
<td>$70.00</td>
</tr>
<tr>
<td>Anatomy & Physi. Made Easy</td>
<td>12.5 CEU</td>
<td>$65.00</td>
</tr>
<tr>
<td>Diseases of the Human Body</td>
<td>18.0 CEU</td>
<td>$85.00</td>
</tr>
<tr>
<td>Adv. Radio & Angiographic</td>
<td>16.0 CEU</td>
<td>$85.00</td>
</tr>
<tr>
<td>Radiation Protection</td>
<td>15.0 CEU</td>
<td>$90.00</td>
</tr>
<tr>
<td>Review of Radiologic Physics</td>
<td>11.5 CEU</td>
<td>$80.00</td>
</tr>
<tr>
<td>HIV/AIDS Introduction</td>
<td>5.5 CEU</td>
<td>$50.00</td>
</tr>
<tr>
<td>Quality Management</td>
<td>17.0 CEU</td>
<td>$90.00</td>
</tr>
<tr>
<td>Pharmacology & Drug Admin</td>
<td>12.0 CEU</td>
<td>$80.00</td>
</tr>
</tbody>
</table>

ASRT Approved for Category A / A+ Credits

Toll Free Customer Service 24/7

Same Day Test Results

Submit Test Online, by Mail or Fax

Save Big on Additional Tests for Friends

Online Certificate and Order History

More Courses Available Online

Jump For Joy

With $10.00 off any of our continuing education courses. Use promo code “JUMP” at checkout!

- **Genitourinary Imaging**
 - 1.8 A+ CEUs
 - $97.95
- **Pediatric Imaging**
 - 13.5 A+ CEUs
 - $89.95
- **Radiologic Science for Technologists**
 - 28 A CEUs
 - $159.95
- **Practical Digital Imaging & PACS**
 - 28 A CEUs
 - $159.95
 - 28 A CEUs
 - $154.95
- **Breast Cancer Imaging**
 - 27.5 A CEUs
 - $159.95
- **PACS**
 - 10 A CEUs
 - $89.95
- **Breast Imaging**
 - 45 A CEUs
 - $164.95
- **Nuclear Medicine Imaging**
 - 28.5 A CEUs
 - $159.95
- **Sectional Anatomy For Imaging Professionals**
 - 26.5 A CEUs
 - $149.90
- **Radiographic Image Analysis**
 - 16 A CEUs
 - $97.95
- **Comprehensive Radiographic Pathology**
 - 12.5 A CEUs
 - $89.95
- **Interventional Radiology**
 - 15 A CEUs
 - $84.95
- **Radiation Protection**
 - 22.5 A CEUs
 - $139.95
- **Computed Tomography**
 - 11.5 A CEUs
 - $79.95
- **Radiographic Imaging & Exposure**
 - 10 A CEUs
 - $79.95
- **Patient Care in Radiology**
 - 8 A CEUs
 - $84.95
- **Accident and Emergency Radiology**
 - 7 A CEUs
 - $79.95

Order online 24 hours a day, 7 days a week

www.xrayce.com

Toll free 1-866-405-9729

X-RAY CE, P.O. Box 1303 Rockwall, Texas 75087

Frequently Asked Questions:

- **ONLINE TESTING**
 - We are now offering e-courses! These are courses that can be done completely online without having to wait for a text book in the mail. In a hurry? Try an e-course.
- **Free FaxBack Service**
- **Free CME Tracking**
- **Major Credit Cards Accepted**
- **Discounts on group orders**
- **Book return program**
- **We have more courses on our website, visit www.xrayce.com for details**

All courses approved as Category A Credit for ARRT licensure renewal.
Get Certified **Now & Avoid “CQ/2011”!**

The ARRT has officially announced their new policy “CQ/2011”, or Continued Qualifications, which means you will need to **re-qualify** your competency every 10 years for **every** certification you earn after December 31, 2010...

...for the rest of your life!

But any certification you earn in 2010 will be **exempt** from CQ/2011!

The CT Registry Review Program

Fourth Edition

The only self-study course that **guarantees** you'll pass the CT registry exam!

- Covers **every** topic on the ARRT’s post-primary exam in CT.
- It’s **guaranteed**: Pass the ARRT exam in CT or your money back!
- Accredited for **19 Category A CE Credits**.
- Complete with 8 easy-to-follow StudyModules.

The MRI Registry Review Program

Fourth Edition

The only self-study course that **guarantees** you'll pass the MR registry exam!

- Covers **every** topic on the ARRT’s post-primary exam in MRI.
- It's **guaranteed**: Pass the ARRT exam in MRI or your money back!
- Accredited for **28 Category A CE Credits**.
- Complete with 12 easy-to-follow StudyModules.

The CT CrossTrainer

Also ideal for PET/CT & Therapy!

The only complete self-study course in CT essentials for technologists!

- Covers all the **essentials** of CT.
- Requires no prior training in CT.
- Explains CT so you’ll **understand** it!
- Accredited for **17 Category A CE Credits**.
- Complete with 6 easy-to-follow StudyModules.

The MR CrossTrainer

The only complete self-study course in MR essentials for technologists!

- Covers all the **essentials** of MR.
- Requires no prior training in MR.
- Explains MR so you’ll **understand** it!
- Accredited for **18 Category A CE Credits**.
- Complete with 6 easy-to-follow StudyModules.

Sectional Anatomy & Imaging Strategies

The only comprehensive self-study course that introduces you to sectional anatomy, patient positioning and clinical techniques!

- Learn all the **essential concepts** of sectional imaging...in a convenient self-study format!
- Explains sectional anatomy and tomographic imaging so you’ll really understand it!
- Accredited for **18 Category A CE credits** fully recognized by the ARRT and the NMTCB.
- Complete with 6 easy-to-follow StudyModules & StudyGuidelines.

Digital Mammography Essentials

The only complete self-study course in digital mammography!

- Meets MQSA requirements for modality-specific training.
- Covers all the **essentials** of digital mammography.
- Requires no prior training.
- Accredited for **11 Category A CE Credits**.
- Complete with 4 easy-to-follow StudyModules.

Radiology Trends for Technologists

The only self-study series giving you **late-breaking trends** in radiology!

- Hot topic review articles in CT, MRI, Mammo, PET, SPECT, X-ray, etc.
- StudyBuddy helps you focus on technologist-relevant info.
- Category A CE credits fully recognized by ARRT & NMTCB.

Designed especially for today’s technologist.

Call today for your Free Info Kit

800-589-5685

or visit www.MICinfo.com

MIC Medical Imaging Consultants, Inc.
1017 33rd Avenue 46, Suite 202 • Office #3070 3 • 800-589-5685

...for your perfect image...
Computed Tomography

Computed tomography (CT) is a sophisticated imaging technique that can show anatomy at different levels within the body. During CT imaging, the x-ray source rotates around the patient, and each rotation produces a single cross-sectional “slice,” like the slices in a loaf of bread. CT allows physicians to see a horizontal piece of the body, just as if you were taking a slice of bread out of a loaf.

Computed tomography scans, also called CT scans, are used to diagnose many conditions. They may be used to examine the head to check for bleeding, tumors, blood clots or signs of stroke. In other parts of the body, CT may be used to tell whether a growth is solid or fluid-filled, determine an organ’s size and shape and evaluate many different diseases.

Patient Preparation

Your personal physician or the radiology facility where you are scheduled to have your CT procedure will give you instructions describing how to prepare for your exam. You will be asked whether there is a chance that you might be pregnant. If you are pregnant, your health care provider will help you weigh the benefits of having a CT scan vs the risks. You may be asked about your medical history and your general health.

Before your examination, a CT technologist will explain the procedure to you and answer any questions you might have. A CT technologist, also known as a radiologic technologist, is a skilled medical professional who has received specialized education in CT imaging techniques.

During the Examination

Examination time can range from 10 minutes to more than an hour, depending upon the part of the body being examined and whether or not a contrast agent is used. For a head scan, you will be asked to remove eyeglasses, dentures, jewelry and barrettes or hairpins because metal can interfere with the imaging. For a body scan, you will be asked to remove all clothing and put on a hospital gown.

The CT technologist will position you on the scanning table. If you are undergoing a head scan, the technologist will place your head in a cradle to help prevent movement. You will be secured onto the table with a safety strap. The technologist will guide the scanning table into the CT unit, which is a machine with a large circular hole in the center. The CT technologist will not be in the room during the scan, but will be able to see you and you will be able to communicate through an intercom system.

As the x-ray tube rotates around you, you will hear a whirring sound. The exam table will move slightly to reposition you for each scan, but it moves so slowly that you might not even notice it. The technologist will tell you when each scan sequence is beginning and how long it will last. You should remain as still as possible during the sequence, and for certain scans you may be asked to hold your breath for a few seconds. Even the slightest movement can blur the image, so it’s important to remain still.

When the exam is complete, your CT scans will be given to a radiologist, a physician who specializes in the diagnostic interpretation of medical images.

Postexamination Information

After your images have been reviewed, your personal physician will receive a report of the findings. Your physician then will advise you of the results and discuss what further procedures, if any, are needed.

For more information, contact the American Society of Radiologic Technologists, 15000 Central Ave SE, Albuquerque, NM 87123-3909, or visit us online at www.asrt.org.
Tomografía Computadorizada

La tomografía computadorizada (TC) es una técnica sofisticada de producción de imágenes que muestra la anatomía en distintos niveles dentro del cuerpo. Durante la producción de imágenes de TC, la fuente de rayos X gira alrededor del paciente y cada rotación produce una única “rebanada” transversal, como si fuera una rebanada de pan. La TC le permite a los médicos ver un pedazo horizontal del cuerpo, como si se estuviera sacando una rebanada de un pan.

Las tomografías axiales computadorizadas, también conocidas en inglés como 'CT scans,' son utilizadas para el diagnóstico de muchos problemas. Pueden utilizarse para examinar la cabeza para constatar la presencia de hemorragias, tumores, coágulos de sangre o señales de apoplejía. En otras partes del cuerpo, la TC puede usarse para saber si un bulto es sólido o si contiene fluidos, determinar el tamaño y forma de un órgano y evaluar muchas enfermedades distintas.

Preparación del Paciente

Su médico personal o establecimiento de radiología en el que tenga marcado su procedimiento de TC le dará instrucciones sobre cómo prepararse para su examen. Se le preguntará si es posible que esté embarazada. Si está embarazada, su proveedor de atención médica la ayudará a pesar los beneficios del examen de TC versus los riesgos que presenta. Se le podrá preguntar sobre su historia clínica y su salud general.

Antes de su examen, un tecnólogo en TC le explicará el procedimiento y responderá a sus preguntas. El tecnólogo en TC, también conocido como tecnólogo radiólogo, es un profesional médico especializado en estudios en técnicas de imágenes de TC.

Durante el Examen

El tiempo del examen puede variar entre 10 minutos y más de una hora, dependiendo de la parte del cuerpo que se esté examinando y si se utiliza o no un agente de contraste. Para un examen de la cabeza, se le pedirá que se saque las gafas, dentaduras, alhajas y hebillas de cabello, pues el metal puede interferir en las imágenes. Para un examen del cuerpo, se le pedirá que se saque toda la ropa y vista una bata de hospital.

El tecnólogo en TC lo(a) posicionará sobre la mesa de examen. Si se trata de un examen de la cabeza, el tecnólogo colocará su cabeza en un soporte para evitar que se mueva. Se lo(a) sujetará a la mesa con una tira de seguridad. El tecnólogo guiará la mesa de examen hacia adentro de la unidad de TC, que es una máquina con un gran agujero circular en su centro. El tecnólogo en TC no estará en la sala durante el examen, pero podrá verlo(a) y comunicarse con usted a través de un intercomunicador.

A medida que el tubo de rayos X gira a su alrededor, escuchará un zumbido. La camilla de examen se moverá levemente para reubicarlo para cada exploración, pero se mueve tan despacio que tal vez siquiera lo note. El tecnólogo le dirá cuándo comienza cada secuencia de exploración y cuánto durará. Usted debe permanecer lo más inmóvil posible durante la secuencia, y para ciertas exploraciones se le podrá pedir que no respire por unos segundos. Hasta el movimiento más leve podrá hacer que la imagen resulte borrosa; por lo tanto, es importante que se mantenga inmóvil.

Cuando finalice el examen, se le entregará sus exploraciones de TC a un radiólogo, médico especializado en la interpretación diagnóstica de imágenes clínicas.

Información de Pos-examen

Una vez analizadas sus radiografías, su médico personal recibirá un informe de los resultados. Su médico luego conversará con usted sobre los resultados y discutirá qué procedimientos futuros, si los hubiera, serían necesarios.
Update Your Professional Skill Set

Earn CE credit with these popular and animated courses and keep up with the expanding influence of computed tomography.

Get started at www.asrt.org/CTBasics.

CT Basics:

Module 1 – Fundamentals
Module 2 – Equipment and Instrumentation
Module 3 – Data Acquisition
Module 4 – Image Processing and Reconstruction
Module 5 – Patient Safety
Module 6 – Image Quality
Module 7 – Procedures
Module 8 – Cross-sectional Anatomy of the Head and Neck
Module 9 – Cross-sectional Anatomy of the Chest, Abdomen and Pelvis
Module 10 – Additional Applications

Successfully complete all 10 for-credit modules and receive a diploma from the ASRT!
Also available: Institutional version licensed for education and staff trainings.

CT Basics. A New Interactive Series

©2009 ASRT. All rights reserved.
CONVERT YOUR MOBILE TO WIRELESS DR

INTRODUCING THE DRX-MOBILE RETROFIT KIT POWERED BY THE WIRELESS DRX1 DETECTOR.

Experience all the benefits of digital radiography and more by adding a DRX-Mobile Retrofit Kit to your existing mobile system. By incorporating the wireless DRX-1 detector you get instant images, streamlined workflow and improved productivity at an affordable cost. All this with a wireless detector.

The DRX-Mobile Retrofit Kit. SIMPLE. GENIUS.

www.carestreamhealth.com/DRXmobile2
1-877-865-6325, ext. 413